1
|
Leungsuwan DS, Chandran M. Bone Fragility in Diabetes and its Management: A Narrative Review. Drugs 2024; 84:1111-1134. [PMID: 39103693 DOI: 10.1007/s40265-024-02078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Bone fragility is a serious yet under-recognised complication of diabetes mellitus (DM) that is associated with significant morbidity and mortality. Multiple complex pathophysiological mechanisms mediating bone fragility amongst DM patients have been proposed and identified. Fracture risk in both type 1 diabetes (T1D) and type 2 diabetes (T2D) continues to be understated and underestimated by conventional risk assessment tools, posing an additional challenge to the identification of at-risk patients who may benefit from earlier intervention or preventive strategies. Over the years, an increasing body of evidence has demonstrated the efficacy of osteo-pharmacological agents in managing skeletal fragility in DM. This review seeks to elaborate on the risk of bone fragility in DM, the underlying pathogenesis and skeletal alterations, the approach to fracture risk assessment in DM, management strategies and therapeutic options.
Collapse
Affiliation(s)
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, 20 College Road, ACADEMIA, Singapore, 169856, Singapore.
- DUKE NUS Medical School, Singapore, Singapore.
| |
Collapse
|
2
|
Emerzian SR, Johannesdottir F, Yu EW, Bouxsein ML. Use of noninvasive imaging to identify causes of skeletal fragility in adults with diabetes: a review. JBMR Plus 2024; 8:ziae003. [PMID: 38505529 PMCID: PMC10945731 DOI: 10.1093/jbmrpl/ziae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 03/21/2024] Open
Abstract
Diabetes, a disease marked by consistent high blood glucose levels, is associated with various complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Notably, skeletal fragility has emerged as a significant complication in both type 1 (T1D) and type 2 (T2D) diabetic patients. This review examines noninvasive imaging studies that evaluate skeletal outcomes in adults with T1D and T2D, emphasizing distinct skeletal phenotypes linked with each condition and pinpointing gaps in understanding bone health in diabetes. Although traditional DXA-BMD does not fully capture the increased fracture risk in diabetes, recent techniques such as quantitative computed tomography, peripheral quantitative computed tomography, high-resolution quantitative computed tomography, and MRI provide insights into 3D bone density, microstructure, and strength. Notably, existing studies present heterogeneous results possibly due to variations in design, outcome measures, and potential misclassification between T1D and T2D. Thus, the true nature of diabetic skeletal fragility is yet to be fully understood. As T1D and T2D are diverse conditions with heterogeneous subtypes, future research should delve deeper into skeletal fragility by diabetic phenotypes and focus on longitudinal studies in larger, diverse cohorts to elucidate the complex influence of T1D and T2D on bone health and fracture outcomes.
Collapse
Affiliation(s)
- Shannon R Emerzian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Elaine W Yu
- Department of Medicine, Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
- Department of Medicine, Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
3
|
Di Monaco M, Castiglioni C, Bardesono F, Freiburger M, Milano E, Massazza G. Femoral bone mineral density at the time of hip fracture is higher in women with versus without type 2 diabetes mellitus: a cross-sectional study. J Endocrinol Invest 2024; 47:59-66. [PMID: 37296371 DOI: 10.1007/s40618-023-02122-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE To compare femoral bone mineral density (BMD) levels in hip-fracture women with versus without type 2 diabetes mellitus (T2DM). We hypothesized that BMD levels could be higher in the women with T2DM than in controls and we aimed to quantify the BMD discrepancy associated with the presence of T2DM. METHODS At a median of 20 days after the occurrence of an original hip fracture due to fragility we measured BMD by dual-energy x-ray absorptiometry at the non-fractured femur. RESULTS We studied 751 women with subacute hip fracture. Femoral BMD was significantly higher in the 111 women with T2DM than in the 640 without diabetes: mean T-score between-group difference was 0.50, (95% CI from 0.30 to 0.69, P < 0.001). The association between the presence of T2DM and femoral BMD persisted after adjustment for age, body mass index, hip-fracture type, neurologic diseases, parathyroid hormone, 25-hydroxyvitamin D and estimated glomerular filtration rate (P < 0.001). For a woman without versus with T2DM, the adjusted odds ratio to have a femoral BMD T-score below the threshold of - 2.5 was 2.13 (95% CI from 1.33 to 3.42, P = 0.002). CONCLUSIONS Fragility fractures of the hip occurred in women with T2DM at a femoral BMD level higher than in control women. In the clinical assessment of fracture risk, we support the adjustment based on the 0.5 BMD T-score difference between women with and without T2DM, although further data from robust longitudinal studies is needed to validate the BMD-based adjustment of fracture risk estimation.
Collapse
Affiliation(s)
- M Di Monaco
- Division of Physical and Rehabilitation Medicine, Osteoporosis Research Center, Presidio Sanitario San Camillo, Fondazione Opera San Camillo, Strada Santa Margherita 136, 10131, Turin, Italy.
| | - C Castiglioni
- Division of Physical and Rehabilitation Medicine, Osteoporosis Research Center, Presidio Sanitario San Camillo, Fondazione Opera San Camillo, Strada Santa Margherita 136, 10131, Turin, Italy
| | - F Bardesono
- Division of Physical and Rehabilitation Medicine, Osteoporosis Research Center, Presidio Sanitario San Camillo, Fondazione Opera San Camillo, Strada Santa Margherita 136, 10131, Turin, Italy
| | - M Freiburger
- Division of Physical and Rehabilitation Medicine, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - E Milano
- Division of Physical and Rehabilitation Medicine, Osteoporosis Research Center, Presidio Sanitario San Camillo, Fondazione Opera San Camillo, Strada Santa Margherita 136, 10131, Turin, Italy
| | - G Massazza
- Division of Physical and Rehabilitation Medicine, Department of Surgical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Ungureanu MC, Bilha SC, Hogas M, Velicescu C, Leustean L, Teodoriu LC, Preda C. Preptin: A New Bone Metabolic Parameter? Metabolites 2023; 13:991. [PMID: 37755271 PMCID: PMC10537071 DOI: 10.3390/metabo13090991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Preptin is a 34-aminoacid peptide derived from the E-peptide of pro-insulin-like growth factor 2 (pro-IGF2) that is co-secreted with insulin and upregulates glucose-mediated insulin secretion. High serum preptin levels were described in conditions associated with insulin resistance, such as polycystic ovary syndrome and type 2 diabetes mellitus (T2M). Insulin and also IGF2 are known to be anabolic bone hormones. The "sweet bone" in T2M usually associates increased density, but altered microarchitecture. Therefore, preptin was proposed to be one of the energy regulatory hormones that positively impacts bone health. Experimental data demonstrate a beneficial impact of preptin upon the osteoblasts. Preptin also appears to regulate osteocalcin secretion, which in turn regulates insulin sensitivity. Preptin is greatly influenced by the glucose tolerance status and the level of physical exercise, both influencing the bone mass. Clinical studies describe low serum preptin concentrations in osteoporosis in both men and women, therefore opening the way towards considering preptin a potential bone anabolic therapy. The current review addresses the relationship between preptin and bone mass and metabolism in the experimental and clinical setting, also considering the effects of preptin on carbohydrate metabolism and the pancreatic-bone loop.
Collapse
Affiliation(s)
- Maria-Christina Ungureanu
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.-C.U.)
| | - Stefana Catalina Bilha
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.-C.U.)
| | - Mihai Hogas
- Physiology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Velicescu
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Letitia Leustean
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.-C.U.)
| | - Laura Claudia Teodoriu
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.-C.U.)
| | - Cristina Preda
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.-C.U.)
| |
Collapse
|
5
|
Zhao C, Kan J, Xu Z, Zhao D, Lu A, Liu Y, Ye X. Higher BMI and lower femoral neck strength in males with type 2 diabetes mellitus and normal bone mineral density. Am J Med Sci 2022; 364:631-637. [PMID: 35718124 DOI: 10.1016/j.amjms.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 01/22/2022] [Accepted: 06/13/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and osteoporosis are two age-associated diseases. Body mass index (BMI) is positively associated with osteoporosis or osteopenia in T2DM population. Bone mineral density does not necessarily reflect the alterations in bone microarchitecture. Our aims were to investigate the relationship between BMI and femoral neck strength in males with T2DM and normal range of bone mineral density (BMD). METHODS This study enrolled 115 males (median age 53.3 years) with T2DM and normal BMD. Femoral neck strength indexes, including compression strength index (CSI), bending strength index (BSI), impact strength index (ISI), were calculated by parameters generated from Dual-energy X-ray absorptiometry software. Pearson correlation analysis was performed to evaluate the relationships between BMI and femoral neck strength variables. RESULTS Compared with T2DM-normal weight group, T2DM-overweight group and T2DM-obesity group had a higher femur neck and total femur BMDs. Cross sectional moment of inertia (CSMI), cross sectional area (CSA), section modulus (SM) were significantly higher (all p<0.05), and buckling ratio (BR) (6.35±2.08 vs 7.18±1.71) was lower in T2DM-obesity group than in T2DM-normal weight group. Compared with T2DM-normal weight group, CSI (all p<0.001), BSI (all p<0.001), ISI (all p<0.001) were significantly reduced in T2DM-obesity and T2DM-overweight groups. Pearson correlation analysis indicated that BMI was negatively correlated with CSI (r= - 0.457, p<0.001), BSI(r = -0.397, p<0.001), ISI (r = - 0.414, p<0.001). CONCLUSIONS Higher BMI is associated with lower femoral neck strength in males with T2DM and normal BMD. It implies that femoral neck fracture risk increases in obese and diabetic males, despite their high bone density.
Collapse
Affiliation(s)
- Cuiping Zhao
- Department of Geriatrics, Changzhou No.2 people's Hospital, Affiliated to Nanjing Medical University, 213000, Changzhou, China
| | - Jingbao Kan
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Zhe Xu
- Department of Laboratory, Changzhou No.2 people's Hospital, Affiliated to Nanjing Medical University, 213000, Changzhou, China
| | - Dan Zhao
- Department of Endocrine and Metabolism Research Center/ Endocrine and metabolic disease treatment center, Changzhou No.2 people's Hospital, Affiliated to Nanjing Medical University, 213000, Changzhou, China
| | - Aijiao Lu
- Department of Endocrine and Metabolism Research Center/ Endocrine and metabolic disease treatment center, Changzhou No.2 people's Hospital, Affiliated to Nanjing Medical University, 213000, Changzhou, China
| | - Yun Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Xinhua Ye
- Department of Geriatrics, Changzhou No.2 people's Hospital, Affiliated to Nanjing Medical University, 213000, Changzhou, China; Department of Endocrine and Metabolism Research Center/ Endocrine and metabolic disease treatment center, Changzhou No.2 people's Hospital, Affiliated to Nanjing Medical University, 213000, Changzhou, China.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW This review article presents the most recent research on bone fragility in individuals with diabetes from a medical imaging perspective. RECENT FINDINGS The widespread availability of dual-energy X-ray absorptiometry (DXA) and trabecular bone score (TBS) software has led to recent assessments of bone fragility with this texture parameter in several studies of type 2 diabetes mellitus (T2D), but in few of type 1 diabetes mellitus (T1D). Although most studies show a trend of reduced TBS values in T2D independent of areal bone mineral density (aBMD) of the lumbar spine, some studies also show the limitations of TBS in both T2D and T1D. Given the limitations of DXA to assess bone strength and investigate the etiology of bone fragility in diabetes, more investigators are incorporating three-dimensional (3D) medical imaging techniques in their studies. Recent use of 3D medical imaging to assess bone fragility in the setting of diabetes has been mostly limited to a few cross-sectional studies predominantly incorporating high-resolution peripheral quantitative computed tomography (HR-pQCT). Although HR-pQCT studies indicate higher tibial cortical porosity in subjects with T2D, results are inconsistent in T1D due to differences in study designs, sample sizes, and subject characteristics, among other factors. With respect to central CT, recent studies support a previous finding in the literature indicating femoral neck geometrical impairments in subjects with T2D and provide encouraging results for the incorporation of finite element analysis (FEA) to assess bone strength in studies of T2D. In the recent literature, there are no studies assessing bone fragility in T1D with QCT, and only two studies used pQCT reporting tibial and radial impairments in young women and children with T1D, respectively. Magnetic resonance imaging (MRI) has not been recently used in diabetic studies of bone fragility. SUMMARY As bone fragility in diabetes is not explained by DXA-derived aBMD and given the limitations of cross-sectional studies, it is imperative to use 3D imaging techniques for longitudinal assessments of the density, quality, and microenvironment of bone to improve our understanding of the effects of diabetes on bone and reduce the risk of fracture in this large and vulnerable population of subjects with diabetes.
Collapse
Affiliation(s)
- Julio Carballido-Gamio
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Chen W, Mao M, Fang J, Xie Y, Rui Y. Fracture risk assessment in diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:961761. [PMID: 36120431 PMCID: PMC9479173 DOI: 10.3389/fendo.2022.961761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Growing evidence suggests that diabetes mellitus is associated with an increased risk of fracture. Bone intrinsic factors (such as accumulation of glycation end products, low bone turnover, and bone microstructural changes) and extrinsic factors (such as hypoglycemia caused by treatment, diabetes peripheral neuropathy, muscle weakness, visual impairment, and some hypoglycemic agents affecting bone metabolism) probably contribute to damage of bone strength and the increased risk of fragility fracture. Traditionally, bone mineral density (BMD) measured by dual x-ray absorptiometry (DXA) is considered to be the gold standard for assessing osteoporosis. However, it cannot fully capture the changes in bone strength and often underestimates the risk of fracture in diabetes. The fracture risk assessment tool is easy to operate, giving it a certain edge in assessing fracture risk in diabetes. However, some parameters need to be regulated or replaced to improve the sensitivity of the tool. Trabecular bone score, a noninvasive tool, indirectly evaluates bone microstructure by analyzing the texture sparsity of trabecular bone, which is based on the pixel gray level of DXA. Trabecular bone score combined with BMD can effectively improve the prediction ability of fracture risk. Quantitative computed tomography is another noninvasive examination of bone microstructure. High-resolution peripheral quantitative computed tomography can measure volume bone mineral density. Quantitative computed tomography combined with microstructure finite element analysis can evaluate the mechanical properties of bones. Considering the invasive nature, the use of microindentation and histomorphometry is limited in clinical settings. Some studies found that the changes in bone turnover markers in diabetes might be associated with fracture risk, but further studies are needed to confirm this. This review focused on summarizing the current development of these assessment tools in diabetes so as to provide references for clinical practice. Moreover, these tools can reduce the occurrence of fragility fractures in diabetes through early detection and intervention.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Endocrinology, Wuxi No.9 People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Min Mao
- Department of Endocrinology, Wuxi No.9 People’s Hospital Affiliated to Soochow University, Wuxi, China
- *Correspondence: Min Mao,
| | - Jin Fang
- Department of Endocrinology, Wuxi No.9 People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Yikai Xie
- Department of Endocrinology, Wuxi No.9 People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Yongjun Rui
- Department of Orthopeadics Surgery, Wuxi No.9 People’s Hospital Affiliated to Soochow University, Wuxi, China
| |
Collapse
|