2
|
Lee M, Lee H, Chung H, Lee JH, Kim D, Cho S, Kim TJ, Kim HS. Micro-current stimulation could inhibit IL-1β-induced inflammatory responses in chondrocytes and protect knee bone cartilage from osteoarthritis. Biomed Eng Lett 2024; 14:801-812. [PMID: 38946809 PMCID: PMC11208348 DOI: 10.1007/s13534-024-00376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 03/29/2024] [Indexed: 07/02/2024] Open
Abstract
This study aimed to evaluate the inhibitory effects of micro-current stimulation (MCS) on inflammatory responses in chondrocytes and degradation of extracellular matrix (ECM) in osteoarthritis (OA). To determine the efficacy of MCS, IL-1β-treated chondrocytes and monosodium iodoacetate (MIA)-induced OA rat model were used. To evaluate the cytotoxicity and nitric oxide (NO) production in SW1353 cells, the presence or absence of IL-1β treatment or various levels of MCS were applied. Immunoblot analysis was conducted to evaluate whether MCS can modulate IL-1R1/MyD88/NF-κB signaling pathway and various indicators involved in ECM degradation. Additionally, to determine whether MCS alleviates subchondral bone structure destruction caused by OA, micro-CT analysis, immunoblot analysis, and ELISA were conducted using OA rat model. 25 and 50 µA levels of MCS showed effects in cell proliferation and NO production. The MCS group with IL-1β treatment lead to significant inhibition of protein expression levels regarding IL-1R1/MyD88/NF-κB signaling and reduction of the nucleus translocation of NF-κB. In addition, the protein expression levels of MMP-1, MMP-3, MMP-13, and IL-1β decreased, whereas collagen II and aggrecan increased. In animal results, morphological analysis of subchondral bone using micro-CT showed that MCS induced subchondral bone regeneration and improvement, as evidenced by increased thickness and bone mineral density of the subchondral bone. Furthermore, MCS-applied groups showed decreases in the protein expression of MMP-1 and MMP-3, while increases in collagen-II and aggrecan expressions. These findings suggest that MCS has the potential to be used as a non-pharmaceutical method to alleviate OA.
Collapse
Affiliation(s)
- Minjoo Lee
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | - Halim Chung
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | - Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Gangwon, 26493 South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | | | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Gangwon, 26493 South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| |
Collapse
|
6
|
Davan I, Fakurazi S, Alias E, Ibrahim N'I, Hwei NM, Hassan H. Astaxanthin as a Potent Antioxidant for Promoting Bone Health: An Up-to-Date Review. Antioxidants (Basel) 2023; 12:1480. [PMID: 37508018 PMCID: PMC10376010 DOI: 10.3390/antiox12071480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, bone loss and its associated diseases have become a significant public health concern due to increased disability, morbidity, and mortality. Oxidative stress and bone loss are correlated, where oxidative stress suppresses osteoblast activity, resulting in compromised homeostasis between bone formation and resorption. This event causes upregulation of bone remodeling turnover rate with an increased risk of fractures and bone loss. Therefore, supplementation of antioxidants can be proposed to reduce oxidative stress, facilitate the bone remodeling process, suppress the initiation of bone diseases, and improve bone health. Astaxanthin (3,3'-dihydroxy-4-4'-diketo-β-β carotene), a potent antioxidant belonging to the xanthophylls family, is a potential ROS scavenger and could be a promising therapeutic nutraceutical possessing various pharmacological properties. In bone, astaxanthin enhances osteoblast differentiation, osteocytes numbers, and/or differentiation, inhibits osteoclast differentiation, cartilage degradation markers, and increases bone mineral density, expression of osteogenic markers, while reducing bone loss. In this review, we presented the up-to-date findings of the potential anabolic effects of astaxanthin on bone health in vitro, animal, and human studies by providing comprehensive evidence for its future clinical application, especially in treating bone diseases.
Collapse
Affiliation(s)
- Iswari Davan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| |
Collapse
|
7
|
Fay LY, Kuo CH, Chang HK, Yeh MY, Chang CC, Ko CC, Tu TH, Kuo YH, Hsu WY, Hung CH, Chen CJ, Wu JC, Tsai MJ, Huang WC, Cheng H, Lee MJ. Comparative Study of the Cytokine Profiles of Serum and Tissues from Patients with the Ossification of the Posterior Longitudinal Ligament. Biomedicines 2023; 11:2021. [PMID: 37509659 PMCID: PMC10377187 DOI: 10.3390/biomedicines11072021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The ossification of the posterior longitudinal ligament (OPLL) is one of the contributing factors leading to severe cervical spondylotic myelopathy (CSM). The mechanism causing ossification is still unclear. The current study was designed to analyze the specimens of patients with or without OPLL. METHODS The study collected 51 patients with cervical spondylosis. There were six serum samples in both the non-OPLL (NOPLL) and OPLL groups. For tissue analysis, there were seven samples in the NOPLL group and five samples in the OPLL group. The specimens of serum and tissue were analyzed by using Human Cytokine Antibody Arrays to differentiate biomarkers between the OPLL and NOPLL groups, as well as between serum and OPLL tissue. Immunohistochemical staining of the ligament tissue was undertaken for both groups. RESULTS For OPLL vs. NOPLL, the serum leptin levels are higher in the OPLL group, corroborating others' observations that it may serve as a disease marker. In the tissue, angiogenin (ANG), osteopontin (OPN), and osteopro-tegerin (OPG) are higher than they are in the OPLL group (p < 0.05). For serum vs. OPLL tissue, many chemotactic cytokines demonstrated elevated levels of MIP1 delta, MCP-1, and RANTES in the serum, while many cytokines promoting or regulating bone genesis were up-regulated in tissue (oncostatin M, FGF-9, LIF, osteopontin, osteoprotegerin, TGF-beta2), as well as the factor that inhibits osteoclastogenesis (IL-10), with very few cytokines responsible for osteoclastogenesis. Molecules promoting angiogenesis, including angiotensin, vEGF, and osteoprotegerin, are abundant in the OPLL tissue, which paves the way for robust bone growth.
Collapse
Affiliation(s)
- Li-Yu Fay
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chao-Hung Kuo
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, and National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
| | - Hsuan-Kan Chang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Mei-Yin Yeh
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chih-Chang Chang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chin-Chu Ko
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Tsung-Hsi Tu
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Yi-Hsuan Kuo
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Wang-Yu Hsu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chien-Hui Hung
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Ching-Jung Chen
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Jau-Ching Wu
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Wen-Cheng Huang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, 168, Jifeng E. Rd., Taichung 413310, Taiwan
| |
Collapse
|
12
|
Liu PL, Diao JY, Wang Q, Liu H, Zhang Y, Liang JQ, Zhang F, Liang XJ, Zhao HM. Cartilage Damage Pathological Characteristics of Diabetic Neuropathic Osteoarthropathy. Anal Cell Pathol (Amst) 2023; 2023:7573165. [PMID: 37197158 PMCID: PMC10185426 DOI: 10.1155/2023/7573165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 05/19/2023] Open
Abstract
Background Diabetic neuropathic osteoarthropathy (DNOAP) is a rare and easily missed complication for diabetes that leads to increased morbidity and mortality. DNOAP is characterized by progressive destruction of bone and joint, but its pathogenesis remains elusive. We herein aimed to investigate the pathological features and pathogenesis of the cartilages damage in DNOAP patients. Methods The articular cartilages of eight patients with DNOAP and eight normal controls were included. Masson staining and safranine O/fixed green staining (S-O) were used to observe the histopathological characteristics of cartilage. The ultrastructure and morphology of chondrocytes were detected by electron microscopy and toluidine blue staining. Chondrocytes were isolated from DNOAP group and control group. The expression of receptor activator of nuclear factor kappaB ligand (RANKL), osteoprotegerin (OPG), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and Aggrecan protein was evaluated by western blot. Reactive oxygen species (ROS) levels were measured using a 2',7'-dichlorofluorescin diacetate (DCFH-DA) probe. The percentage of apoptotic cells was determined by flow cytometry (FCM). The chondrocytes were cultured with different glucose concentrations to observe the expression of RANKL and OPG. Results Compared with the control group, the DNOAP group showed fewer chondrocytes, subchondral bone hyperplasia, and structural disorder, and a large number of osteoclasts formed in the subchondral bone area. Moreover, mitochondrial and endoplasmic reticulum swellings were observed in the DNOAP chondrocytes. The chromatin was partially broken and concentrated at the edge of nuclear membrane. The ROS fluorescence intensity of chondrocyte in DNOAP group was higher than that in normal control group (28.1 ± 2.3 vs. 11.9 ± 0.7; P < 0.05). The expression of RANKL, TNF-α, IL-1β, and IL-6 protein in DNOAP group was higher than that in normal control group, whereas OPG and Aggrecan protein were lower than that in normal control group (both P < 0.05). FCM showed that the apoptotic rate of chondrocyte in DNOAP group was higher than that in normal control group (P < 0.05). The RANKL/OPG ratio showed significant upward trend when the concentration of glucose was over than 15 mM. Conclusions DNOAP patients tend to have severe destruction of articular cartilage and collapse of organelle structure including mitochondrion and endoplasm reticulum. Indicators of bone metabolism (RANKL and OPG) and inflammatory cytokines (IL-1β, IL-6, and TNF-α) play an important role in promoting the pathogenesis of DNOAP. The glucose concentration higher than 15 mM made the RANKL/OPG ratio change rapidly.
Collapse
Affiliation(s)
- Pei-Long Liu
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| | - Jia-Yu Diao
- Cardiovascular Department, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Qiong Wang
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| | - Huan Liu
- School of Public Health, Xi'an Jiaotong University, Xi'an 710086, China
| | - Yan Zhang
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| | - Jing-Qi Liang
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| | - Feng Zhang
- School of Public Health, Xi'an Jiaotong University, Xi'an 710086, China
| | - Xiao-Jun Liang
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| | - Hong-Mou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| |
Collapse
|