1
|
Duport A, Morel P, Léonard G, Devanne H. The influence of pain and kinesiophobia on motor control of the upper limb: how pointing task paradigms can point to new avenues of understanding. Pain 2024; 165:2044-2054. [PMID: 38501987 DOI: 10.1097/j.pain.0000000000003213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/01/2024] [Indexed: 03/20/2024]
Abstract
ABSTRACT People experiencing kinesiophobia are more likely to develop persistent disabilities and chronic pain. However, the impact of kinesiophobia on the motor system remains poorly understood. We investigated whether kinesiophobia could modulate shoulder pain-induced changes in (1) kinematic parameters and muscle activation during functional movement and (2) corticospinal excitability. Thirty healthy, pain-free subjects took part in the study. Shoulder, elbow, and finger kinematics, as well as electromyographic activity of the upper trapezius and anterior deltoid muscles, were recorded while subjects performed a pointing task before and during pain induced by capsaicin at the shoulder. Anterior deltoid cortical changes in excitability were assessed through the slope of transcranial magnetic stimulation input-output curves obtained before and during pain. Results revealed that pain reduced shoulder electromyographic activity and had a variable effect on finger kinematics, with individuals with higher kinesiophobia showing greater reduction in finger target traveled distance. Kinesiophobia scores were also correlated with the changes in deltoid corticospinal excitability, suggesting that the latter can influence motor activity as soon as the motor signal emerges. Taken together, these results suggest that pain and kinesiophobia interact with motor control adaptation.
Collapse
Affiliation(s)
- Arnaud Duport
- University Littoral Côte d'Opale, University Artois, University Lille, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Calais, France
- Research Centre on Aging, Sherbrooke, QC, Canada
- University of Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre Morel
- University Littoral Côte d'Opale, University Artois, University Lille, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Calais, France
| | - Guillaume Léonard
- Research Centre on Aging, Sherbrooke, QC, Canada
- University of Sherbrooke, Sherbrooke, QC, Canada
| | - Hervé Devanne
- University Littoral Côte d'Opale, University Artois, University Lille, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Calais, France
| |
Collapse
|
2
|
Badr L, Gagné-Pelletier L, Massé-Alarie H, Mercier C. Effect of Phasic Experimental Pain Applied during Motor Preparation or Execution on Motor Performance and Adaptation in a Reaching Task: A Randomized Trial. Brain Sci 2024; 14:851. [PMID: 39335347 PMCID: PMC11430375 DOI: 10.3390/brainsci14090851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Musculoskeletal conditions often involve pain related to specific movements. However, most studies on the impact of experimental pain on motor performance and learning have used tonic pain models. This study aimed to evaluate the effect of experimental phasic pain during the preparation or execution of a reaching task on the acquisition and retention of sensorimotor adaptation. Participants were divided into three groups: no pain, pain during motor preparation, and pain during motor execution. Pain was induced over the scapula with a laser while participants performed a force field adaptation task over two days. To assess the effect of pain on motor performance, two baseline conditions (with or without pain) involving unperturbed pointing movements were also conducted. The results indicated that the timing of the nociceptive stimulus differently affected baseline movement performance. Pain during motor preparation shortened reaction time, while pain during movement execution decreased task performance. However, when these baseline effects were accounted for, no impact of pain on motor adaptation or retention was observed. All groups showed significant improvements in all motor variables for both adaptation and retention. In conclusion, while acute phasic pain during motor preparation or execution can affect the movement itself, it does not interfere with motor acquisition or retention during a motor adaptation task.
Collapse
Affiliation(s)
- Laïla Badr
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Léandre Gagné-Pelletier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Hugo Massé-Alarie
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Catherine Mercier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Dupuis F, Prud’Homme F, Tougas A, Campeau-Lecours A, Mercier C, Roy JS. The effect of a task-specific training on upper limb performance and kinematics while performing a reaching task in a fatigued state. PLoS One 2024; 19:e0297283. [PMID: 38252643 PMCID: PMC10802943 DOI: 10.1371/journal.pone.0297283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Fatigue impacts motor performance and upper limb kinematics. It is of interest to study whether it is possible to minimize the potentially detrimental effects of fatigue with prevention programs. OBJECTIVE To determine the effect of task-specific training on upper limb kinematics and motor performance when reaching in a fatigued state. METHODS Thirty healthy participants were recruited (Training group n = 15; Control group n = 15). Both groups took part in two evaluation sessions (Day 1 and Day 5) during which they performed a reaching task (as quickly and accurately as possible) in two conditions (rested and fatigued). During the reaching task, joint kinematics and motor performance (accuracy and speed) were evaluated. The Training group participated in three task-specific training sessions between Day 1 and Day 5; they trained once a day, for three days. The Control group did not perform any training. A three-way non-parametric ANOVA for repeated measures (Nonparametric Analysis of Longitudinal Data; NparLD) was used to assess the impact of the training (Condition [within subject]: rested, fatigued; Day [within subject]: Day 1 vs. Day 5 and Group [between subjects]: Training vs. Control). RESULTS After the training period, the Training group significantly improved their reaching speed compared to the Control group (Day x Group p < .01; Time effect: Training group = p < .01, Control group p = .20). No between-group difference was observed with respect to accuracy. The Training group showed a reduction in contralateral trunk rotation and lateral trunk flexion in Day 2 under the fatigue condition (Group x Day p < .04; Time effect: Training group = p < .01, Control group = p < .59). CONCLUSION After the 3-day training, participants demonstrated improved speed and reduced reliance on trunk compensations to complete the task under fatigue conditions. Task-specific training could help minimizing some effects of fatigue.
Collapse
Affiliation(s)
- Frédérique Dupuis
- Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, Quebec, Canada
| | - Félix Prud’Homme
- Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, Quebec, Canada
| | - Arielle Tougas
- Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, Quebec, Canada
| | - Alexandre Campeau-Lecours
- Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, Quebec, Canada
- Faculty of Science and Engineering, Université Laval, Quebec City, Quebec, Canada
| | - Catherine Mercier
- Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, Quebec, Canada
| | - Jean-Sébastien Roy
- Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, Quebec, Canada
| |
Collapse
|
4
|
Bertrand-Charette M, Roy JS, Bouyer LJ. Effect of acute ankle experimental pain on lower limb motor control assessed by the modified star excursion balance test. Front Sports Act Living 2023; 5:1082240. [PMID: 36741244 PMCID: PMC9890167 DOI: 10.3389/fspor.2023.1082240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction Following most musculoskeletal injuries, motor control is often altered. Acute pain has been identified as a potential contributing factor. However, there is little evidence of this interaction for acute pain following ankle sprains. As pain is generally present following this type of injury, it would be important to study the impact of acute pain on ankle motor control. To do so, a valid and reliable motor control test frequently used in clinical settings should be used. Therefore, the objective of this study was therefore to assess the effect of acute ankle pain on the modified Star Excursion Balance Test reach distance. Methods Using a cross-sectional design, 48 healthy participants completed the modified Star Excursion Balance Test twice (mSEBT1 and mSEBT2). Following the first assessment, they were randomly assigned to one of three experimental groups: Control (no stimulation), Painless (non-nociceptive stimulation) and Painful (nociceptive stimulation). Electrodes were placed on the right lateral malleolus to deliver an electrical stimulation during the second assessment for the Painful and Painless groups. A generalized estimating equations model was used to compare the reach distance between the groups/conditions and assessments. Results Post-hoc test results: anterior (7.06 ± 1.54%; p < 0.0001) and posteromedial (6.53 ± 1.66%; p < 0.001) directions showed a significant reach distance reduction when compared to baseline values only for the Painful group. Regarding the anterior direction, this reduction was larger than the minimal detectable change (5.87%). Conclusion The presence of acute pain during the modified Star Excursion Balance Test can affect performance and thus might interfere with the participant's lower limb motor control. As none of the participants had actual musculoskeletal injury, this suggests that pain and not only musculoskeletal impairments could contribute to the acute alteration in motor control.
Collapse
Affiliation(s)
- Michaël Bertrand-Charette
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada,Department of Rehabilitation, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Jean-Sébastien Roy
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada,Department of Rehabilitation, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Laurent J. Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada,Department of Rehabilitation, Faculty of Medicine, Université Laval, Québec, QC, Canada,Correspondence: Laurent J. Bouyer
| |
Collapse
|
5
|
Matthews D, Cancino EE, Falla D, Khatibi A. Exploring pain interference with motor skill learning in humans: A systematic review. PLoS One 2022; 17:e0274403. [PMID: 36099284 PMCID: PMC9470002 DOI: 10.1371/journal.pone.0274403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Motor learning underpins successful motor skill acquisition. Although it is well known that pain changes the way we move, it’s impact on motor learning is less clear. The aim of this systematic review was to synthesize evidence on the impact of experimental and clinical pain on task performance and activity-dependent plasticity measures across learning and explore these findings in relation to different pain and motor learning paradigms. Five databases were searched: Web of Science, Scopus, MEDLINE, Embase and CINAHL. Two reviewers independently screened the studies, extracted data, and assessed risk of bias using the Cochrane ROB2 and ROBIN-I. The overall strength of evidence was rated using the GRADE guidelines. Due to the heterogeneity of study methodologies a narrative synthesis was employed. Twenty studies were included in the review: fifteen experimental pain and five clinical pain studies, covering multiple motor paradigms. GRADE scores for all outcome measures suggested limited confidence in the reported effect for experimental pain and clinical pain, on motor learning. There was no impact of pain on any of the task performance measures following acquisition except for ‘accuracy’ during a tongue protrusion visuomotor task and ‘timing of errors’ during a motor adaptation locomotion task. Task performance measures at retention, and activity dependent measures at both acquisition and retention showed conflicting results. This review delivers a detailed synthesis of research studies exploring the impact of pain on motor learning. This is despite the challenges provided by the heterogeneity of motor learning paradigms, outcome measures and pain paradigms employed in these studies. The results highlight important questions for further research with the goal of strengthening the confidence of findings in this area.
Collapse
Affiliation(s)
- David Matthews
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| | - Edith Elgueta Cancino
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|