1
|
Choo A, Richard MJ. The Role of 3D Custom Implants in Upper Extremity Surgery. J Orthop Trauma 2024; 38:S30-S36. [PMID: 38502601 DOI: 10.1097/bot.0000000000002760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 03/21/2024]
Abstract
SUMMARY As the technology of three-dimensional (3D) printing becomes more refined and accessible, multiple applications of its use are becoming more commonplace in upper extremity surgery. 3D-printed models have been beneficial in preoperative planning of complex cases of acute trauma or malunions, contributing to spatial understanding or even contouring of implants. Custom guides can also be created to assist intraoperatively with precise placement of osteotomies or arthroplasty implants. Finally, custom 3D implants have been described for cases of bone loss in the upper extremity. This can be for relatively small gaps after malunion correction or extensive defects, typically for trauma or tumor. Articular defects can also be addressed with this technology, although special considerations should be given to the implant design and longevity in these situations. Because of the relatively recent nature of 3D implants, long-term data are lacking. However, they show great promise in an expanding range of challenging clinical indications.
Collapse
Affiliation(s)
- Andrew Choo
- Department of Orthopaedic Surgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX; and
| | - Marc J Richard
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC
| |
Collapse
|
2
|
Gu Y, Zhuang Y. 3D printing-assisted surgery for the treatment of proximal clavicle fracture with ipsilateral acromioclavicular joint dislocation: a case description. Quant Imaging Med Surg 2024; 14:1234-1240. [PMID: 38223100 PMCID: PMC10784062 DOI: 10.21037/qims-23-720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/11/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Yang Gu
- Department of Trauma Orthopedics Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Yunqiang Zhuang
- Department of Trauma Orthopedics Surgery, Ningbo No. 6 Hospital, Ningbo, China
| |
Collapse
|
3
|
Liang H, Zhang H, Chen B, Yang L, Xu R, Duan S, Cai Z. 3D printing technology combined with personalized plates for complex distal intra-articular fractures of the trimalleolar ankle. Sci Rep 2023; 13:22667. [PMID: 38114629 PMCID: PMC10730506 DOI: 10.1038/s41598-023-49515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
This study investigated the effectiveness of 3D printing technology in combination with personalized custom-made steel plates in the treatment of complex distal intra-articular trimalleolar fractures, with the aim of providing a new approach to improve ankle joint function in patients. The 48 patients with complex distal intra-articular trimalleolar fractures included in the study were randomly divided into two groups: the personalized custom-made steel plate group (n = 24) and the conventional steel plate group (n = 24). A comparison was made between the two groups in terms of preoperative preparation time, hospitalization duration, surgical time, fracture reduction and internal fixation time, intraoperative fluoroscopy instances, surgical incision length, fracture healing time, follow-up duration, degree of fracture reduction, ankle joint functional recovery, and the occurrence of complications. The personalized steel plate group exhibited longer preoperative preparation time and hospitalization duration compared to the conventional steel plate group (p < 0.001). However, the personalized steel plate group demonstrated significantly shorter surgical duration, time for fracture reduction and internal fixation, reduced intraoperative fluoroscopy frequency, and a shorter overall surgical incision length (p < 0.001). Both groups displayed similar fracture healing times and follow-up durations (p > 0.05). The personalized steel plate group showed a higher rate of successful fracture reduction (87.5% vs. 79.2%, p > 0.05) and a lower incidence of complications (8.3% vs. 20.8%, p = 0.22), although these differences did not reach statistical significance. Furthermore, the personalized steel plate group exhibited superior ankle joint function scores during follow-up compared to the conventional steel plate group (p < 0.05). By utilizing 3D printing technology in conjunction with personalized custom-made steel plates, personalized treatment plans are provided for patients with complex comminuted tri-malleolar ankle fractures, enabling safer, more efficient, and satisfactory orthopedic surgeries.
Collapse
Affiliation(s)
- Hairui Liang
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China
| | - He Zhang
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China
| | - Beibei Chen
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China
| | - Lei Yang
- School of Pharmacy, Inner Mongolia Medical University, 5 Xinhua Street, Hohhot, 010107, Inner Mongolia Autonomous Region, China
| | - Rongda Xu
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China
| | - Siyu Duan
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China
| | - Zhencun Cai
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China.
| |
Collapse
|