1
|
van der Stel SD, Lai M, Groen HC, Dirven R, Karakullukcu MB, Karssemakers LHE, van Gastel M, Hendriks BHW, Ruers TJM, Schreuder WH. Imaging Photoplethysmography (iPPG) in Head and Neck Reconstructive Surgery: A Novel Technique for Noninvasive Flap Perfusion Monitoring. Lasers Surg Med 2024. [PMID: 39540240 DOI: 10.1002/lsm.23859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Evaluate imaging photoplethysmography (iPPG) as a novel noninvasive technique to assess flap perfusion in head and neck free flap reconstructive (FFR) surgeries. METHODS Intraoperative iPPG was performed in 17 patients undergoing FFR surgery. Imaging consisted of a 30-s video from which perfusion maps were extracted, providing detailed information about blood flow and pulsatility in the flap microvasculature. During each procedure, iPPG acquisitions were acquired representing distinct perfusion conditions of the flap (fully perfused/ischemic/reperfused). When possible, postoperative measurements were performed to assess flap recovery during the critical time period (3 days) and long-term follow-up (30 days). RESULTS Perfusion maps, displaying iPPG amplitude and delay times, correlated strongly (p < 0.001) with the perfusion status of the tissue. One case of postoperative thrombosis, leading to flap failure, was identified with iPPG. After surgical revision in this case, flap perfusion was restored and confirmed by iPPG. Postoperative follow-up imaging allowed for objective visualization of flap recovery short term (3 days) and up to 30 days after the surgical procedure. CONCLUSIONS This study shows that iPPG is suitable for objective and noninvasive assessment of flap perfusion in head and neck FFR surgery. In addition, postoperative monitoring shows potential for assessing flap perfusion in patients with increased risk of postoperative complications.
Collapse
Affiliation(s)
- S D van der Stel
- Faculty TNW, Group Nanobiophysics, Twente University, Enschede, North Brabant, The Netherlands
- Department of Surgery, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - M Lai
- IGT & US Systems, Philips Research, High Tech, Eindhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - H C Groen
- Department of Surgery, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - R Dirven
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - M B Karakullukcu
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - L H E Karssemakers
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - M van Gastel
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Patient Care & Monitoring, Philips Research, High Tech, Eindhoven, The Netherlands
| | - B H W Hendriks
- IGT & US Systems, Philips Research, High Tech, Eindhoven, The Netherlands
- Biomedical Engineering, Delft University of Technology, Delft, The Netherlands
| | - T J M Ruers
- Faculty TNW, Group Nanobiophysics, Twente University, Enschede, North Brabant, The Netherlands
- Department of Surgery, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - W H Schreuder
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Berkane Y, Cascales JP, Roussakis E, Lellouch AG, Slade J, Bertheuil N, Randolph MA, Cetrulo CL, Evans CL, Uygun K. Continuous oxygen monitoring to enhance ex-vivo organ machine perfusion and reconstructive surgery. Biosens Bioelectron 2024; 262:116549. [PMID: 38971037 DOI: 10.1016/j.bios.2024.116549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Continuous oxygenation monitoring of machine-perfused organs or transposed autologous tissue is not currently implemented in clinical practice. Oxygenation is a critical parameter that could be used to verify tissue viability and guide corrective interventions, such as perfusion machine parameters or surgical revision. This work presents an innovative technology based on oxygen-sensitive, phosphorescent metalloporphyrin allowing continuous and non-invasive oxygen monitoring of ex-vivo perfused vascularized fasciocutaneous flaps. The method comprises a small, low-energy optical transcutaneous oxygen sensor applied on the flap's skin paddle as well as oxygen sensing devices placed into the tubing. An intermittent perfusion setting was designed to study the response time and accuracy of this technology over a total of 54 perfusion cycles. We further evaluated correlation between the continuous oxygen measurements and gold-standard perfusion viability metrics such as vascular resistance, with good agreement suggesting potential to monitor graft viability at high frequency, opening the possibility to employ feedback control algorithms in the future. This proof-of-concept study opens a range of research and clinical applications in reconstructive surgery and transplantation at a time when perfusion machines undergo rapid clinical adoption with potential to improve outcomes across a variety of surgical procedures and dramatically increase access to transplant medicine.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA; Department of Plastic, Reconstructive and Aesthetic Surgery, CHU de Rennes, Rennes University, Rennes, 35000, France; Shriners Children's, Boston, 02114, MA, USA; MOBIDIC, UMR1236, INSERM, Rennes University, Rennes, 35000, France
| | - Juan Pedro Cascales
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Emmanuel Roussakis
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA
| | - Alexandre G Lellouch
- Vascularized Composite Allotransplantation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA; Shriners Children's, Boston, 02114, MA, USA
| | - Julian Slade
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU de Rennes, Rennes University, Rennes, 35000, France; MOBIDIC, UMR1236, INSERM, Rennes University, Rennes, 35000, France
| | - Mark A Randolph
- Vascularized Composite Allotransplantation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA; Shriners Children's, Boston, 02114, MA, USA
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA; Shriners Children's, Boston, 02114, MA, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA.
| | - Korkut Uygun
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU de Rennes, Rennes University, Rennes, 35000, France; Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA.
| |
Collapse
|
3
|
Rogoń I, Rogoń A, Kaczmarek M, Bujnowski A, Wtorek J, Lachowski F, Jankau J. Flap Monitoring Techniques: A Review. J Clin Med 2024; 13:5467. [PMID: 39336953 PMCID: PMC11432309 DOI: 10.3390/jcm13185467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Postoperative tissue flap vitality monitoring enables early detection of clinical complications, allowing for intervention. Timely re-operation can prevent the need for extensive correction procedures, thus reducing healthcare costs and hospitalization time. Statistics show that monitoring can increase the success rate of flap survival to 95% or higher. However, despite the significant progress in monitoring techniques, major and minor complications, leading to the loss of the flap, still occur. This clinical application review aims to provide a comprehensive overview of the recent advancements and findings in flap surgery reconstructions, transplants, and systems for their postoperative assessment. The literature from the years 1925 to 2024 has been reviewed to capture previous and current solutions for monitoring flap vitality. Clinically acclaimed methods and experimental techniques were classified and reviewed from a technical and clinical standpoint. Physical examination, metabolism change, ultrasound method, and electromagnetic (EM) radiation-based measurement methods were carefully evaluated from the perspective of their considered applications. Guidelines aiding engineers in the future design and development process of monitoring systems were proposed. This paper provides a comprehensive overview of the monitoring techniques used in postoperative flap vitality monitoring. It also gives an overview of each approach and potential ways for future development.
Collapse
Affiliation(s)
- Ignacy Rogoń
- Biomedical Engineering Department, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.K.); (A.B.); (J.W.)
| | | | - Mariusz Kaczmarek
- Biomedical Engineering Department, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.K.); (A.B.); (J.W.)
| | - Adam Bujnowski
- Biomedical Engineering Department, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.K.); (A.B.); (J.W.)
| | - Jerzy Wtorek
- Biomedical Engineering Department, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.K.); (A.B.); (J.W.)
- BioTechMed Center, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Filip Lachowski
- Plastic Surgery Division, Medical Univeristy of Gdansk, 80-210 Gdansk, Poland; (F.L.); (J.J.)
| | - Jerzy Jankau
- Plastic Surgery Division, Medical Univeristy of Gdansk, 80-210 Gdansk, Poland; (F.L.); (J.J.)
| |
Collapse
|
4
|
Kleiss SF, Michi M, Schuurman SN, de Vries JPP, Werker PM, de Jongh SJ. Tissue perfusion in DIEP flaps using Indocyanine Green Fluorescence Angiography, Hyperspectral imaging, and Thermal imaging. JPRAS Open 2024; 41:61-74. [PMID: 38948075 PMCID: PMC11214344 DOI: 10.1016/j.jpra.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024] Open
Abstract
Flap necrosis continues to occur in skin free flap autologous breast reconstruction. Therefore, we investigated the benefits of indocyanine green angiography (ICGA) using quantitative parameters for the objective, perioperative evaluation of flap perfusion. In addition, we investigated the feasibility of hyperspectral (HSI) and thermal imaging (TI) for postoperative flap monitoring. A single-center, prospective observational study was performed on 15 patients who underwent deep inferior epigastric perforator (DIEP) flap breast reconstruction (n=21). DIEP-flap perfusion was evaluated using ICGA, HSI, and TI using a standardized imaging protocol. The ICGA perfusion curves and derived parameters, HSI extracted oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) values, and flap temperatures from TI were analyzed and correlated to the clinical outcomes. Post-hoc quantitative analysis of intraoperatively collected data of ICGA application accurately distinguished between adequately and insufficiently perfused DIEP flaps. ICG perfusion curves identified the lack of arterial inflow (n=2) and occlusion of the venous outflow (n=1). In addition, a postoperatively detected partial flap epidermolysis could have been predicted based on intraoperative quantitative ICGA data. During postoperative monitoring, HSI was used to identify impaired perfusion areas within the DIEP flap based on deoxyHb levels. The results of this study showed a limited added value of TI. Quantitative, post-hoc analysis of ICGA data produced objective and reproducible parameters that enabled the intraoperative detection of arterial and venous congested DIEP flaps. HSI appeared to be a promising technique for postoperative flap perfusion assessment. A diagnostic accuracy study is needed to investigate ICGA and HSI parameters in real-time and demonstrate their clinical benefit.
Collapse
Affiliation(s)
- Simone F. Kleiss
- Department of Surgery, Division of Vascular Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Marlies Michi
- Department of Plastic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Simone N. Schuurman
- Department of Surgery, Division of Vascular Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Jean-Paul P.M. de Vries
- Department of Surgery, Division of Vascular Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul M.N. Werker
- Department of Plastic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Steven J. de Jongh
- Department of Plastic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Kim HH, Song IS, Cha RJ. Advancing DIEP Flap Monitoring with Optical Imaging Techniques: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4457. [PMID: 39065854 PMCID: PMC11280549 DOI: 10.3390/s24144457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES This review aims to explore recent advancements in optical imaging techniques for monitoring the viability of Deep Inferior Epigastric Perforator (DIEP) flap reconstruction. The objectives include highlighting the principles, applications, and clinical utility of optical imaging modalities such as near-infrared spectroscopy (NIRS), indocyanine green (ICG) fluorescence angiography, laser speckle contrast imaging (LSCI), hyperspectral imaging (HSI), dynamic infrared thermography (DIRT), and short-wave infrared thermography (SWIR) in assessing tissue perfusion and oxygenation. Additionally, this review aims to discuss the potential of these techniques in enhancing surgical outcomes by enabling timely intervention in cases of compromised flap perfusion. MATERIALS AND METHODS A comprehensive literature review was conducted to identify studies focusing on optical imaging techniques for monitoring DIEP flap viability. We searched PubMed, MEDLINE, and relevant databases, including Google Scholar, Web of Science, Scopus, PsycINFO, IEEE Xplore, and ProQuest Dissertations & Theses, among others, using specific keywords related to optical imaging, DIEP flap reconstruction, tissue perfusion, and surgical outcomes. This extensive search ensured we gathered comprehensive data for our analysis. Articles discussing the principles, applications, and clinical use of NIRS, ICG fluorescence angiography, LSCI, HSI, DIRT, and SWIR in DIEP flap monitoring were selected for inclusion. Data regarding the techniques' effectiveness, advantages, limitations, and potential impact on surgical decision-making were extracted and synthesized. RESULTS Optical imaging modalities, including NIRS, ICG fluorescence angiography, LSCI, HSI, DIRT, and SWIR offer a non- or minimal-invasive, real-time assessment of tissue perfusion and oxygenation in DIEP flap reconstruction. These techniques provide objective and quantitative data, enabling surgeons to monitor flap viability accurately. Studies have demonstrated the effectiveness of optical imaging in detecting compromised perfusion and facilitating timely intervention, thereby reducing the risk of flap complications such as partial or total loss. Furthermore, optical imaging modalities have shown promise in improving surgical outcomes by guiding intraoperative decision-making and optimizing patient care. CONCLUSIONS Recent advancements in optical imaging techniques present valuable tools for monitoring the viability of DIEP flap reconstruction. NIRS, ICG fluorescence angiography, LSCI, HSI, DIRT, and SWIR offer a non- or minimal-invasive, real-time assessment of tissue perfusion and oxygenation, enabling accurate evaluation of flap viability. These modalities have the potential to enhance surgical outcomes by facilitating timely intervention in cases of compromised perfusion, thereby reducing the risk of flap complications. Incorporating optical imaging into clinical practice can provide surgeons with objective and quantitative data, assisting in informed decision-making for optimal patient care in DIEP flap reconstruction surgeries.
Collapse
Affiliation(s)
- Hailey Hwiram Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (H.H.K.); (R.J.C.)
| | - In-Seok Song
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (H.H.K.); (R.J.C.)
- Department of Oral & Maxillofacial Surgery, Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Richard Jaepyeong Cha
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (H.H.K.); (R.J.C.)
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
6
|
Pachyn E, Aumiller M, Freymüller C, Linek M, Volgger V, Buchner A, Rühm A, Sroka R. Investigation on the influence of the skin tone on hyperspectral imaging for free flap surgery. Sci Rep 2024; 14:13979. [PMID: 38886457 PMCID: PMC11183063 DOI: 10.1038/s41598-024-64549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Hyperspectral imaging (HSI) is a new emerging modality useful for the noncontact assessment of free flap perfusion. This measurement technique relies on the optical properties within the tissue. Since the optical properties of hemoglobin (Hb) and melanin overlap, the results of the perfusion assessment and other tissue-specific parameters are likely to be distorted by the melanin, especially at higher melanin concentrations. Many spectroscopic devices have been shown to struggle with a melanin related bias, which results in a clinical need to improve non-invasive perfusion assessment, especially for a more pigmented population. This study investigated the influence of skin tones on tissue indices measurements using HSI. In addition, other factors that might affect HSI, such as age, body mass index (BMI), sex or smoking habits, were also considered. Therefore, a prospective feasibility study was conducted, including 101 volunteers from whom tissue indices measurements were performed on 16 different body sites. Skin tone classification was performed using the Fitzpatrick skin type classification questionnaire, and the individual typology angle (ITA) acquired from the RGB images was calculated simultaneously with the measurements. Tissue indices provided by the used HSI-device were correlated to the possible influencing factors. The results show that a dark skin tone and, therefore, higher levels of pigmentation influence the HSI-derived tissue indices. In addition, possible physiological factors influencing the HSI-measurements were found. In conclusion, the HSI-based tissue indices can be used for perfusion assessment for people with lighter skin tone levels but show limitations in people with darker skin tones. Furthermore, it could be used for a more individual perfusion assessment if different physiological influencing factors are respected.
Collapse
Affiliation(s)
- Ester Pachyn
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany.
| | - Maximilian Aumiller
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christian Freymüller
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Matthäus Linek
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
| | - Veronika Volgger
- Department of Otorhinolaryngology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Alexander Buchner
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Adrian Rühm
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Ronald Sroka
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
7
|
Schulz T, Köhler H, Kohler LH, Langer S, Nuwayhid R. Hyperspectral Imaging Detects Clitoral Vascular Issues in Gender-Affirming Surgery. Diagnostics (Basel) 2024; 14:1252. [PMID: 38928666 PMCID: PMC11202724 DOI: 10.3390/diagnostics14121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to assess the efficacy of hyperspectral imaging (HSI) as an intraoperative perfusion imaging modality during gender affirmation surgery (GAS). The hypothesis posited that HSI could quantify perfusion to the clitoral complex, thereby enabling the prediction of either uneventful wound healing or the occurrence of necrosis. In this non-randomised prospective clinical study, we enrolled 30 patients who underwent GAS in the form of vaginoplasty with the preparation of a clitoral complex from 2020 to 2024 and compared patients' characteristics as well as HSI data regarding clitoris necrosis. Individuals demonstrating uneventful wound healing pertaining to the clitoral complex were designated as Group A. Patients with complete necrosis of the neo-clitoris were assigned to Group B. Patient characteristics were collected and subsequently a comparative analysis carried out. No significant difference in patient characteristics was observed between the two groups. Necrosis occurred when both StO2 and NIR PI parameters fell below 40%. For the simultaneous occurrence of StO2 and NIR PI of 40% or less, a sensitivity of 92% and specificity of 72% was calculated. Intraoperatively, the onset of necrosis in the clitoral complex can be reliably predicted with the assistance of HSI.
Collapse
Affiliation(s)
- Torsten Schulz
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (S.L.); (R.N.)
| | - Hannes Köhler
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany;
| | | | - Stefan Langer
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (S.L.); (R.N.)
| | - Rima Nuwayhid
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (S.L.); (R.N.)
| |
Collapse
|
8
|
Larsson M, Ewerlöf M, Salerud EG, Strömberg T, Fredriksson I. Artificial neural networks trained on simulated multispectral data for real-time imaging of skin microcirculatory blood oxygen saturation. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S33304. [PMID: 38989257 PMCID: PMC11234456 DOI: 10.1117/1.jbo.29.s3.s33304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Significance Imaging blood oxygen saturation (SO 2 ) in the skin can be of clinical value when studying ischemic tissue. Emerging multispectral snapshot cameras enable real-time imaging but are limited by slow analysis when using inverse Monte Carlo (MC), the gold standard for analyzing multispectral data. Using artificial neural networks (ANNs) facilitates a significantly faster analysis but requires a large amount of high-quality training data from a wide range of tissue types for a precise estimation ofSO 2 . Aim We aim to develop a framework for training ANNs that estimatesSO 2 in real time from multispectral data with a precision comparable to inverse MC. Approach ANNs are trained using synthetic data from a model that includes MC simulations of light propagation in tissue and hardware characteristics. The model includes physiologically relevant variations in optical properties, unique sensor characteristics, variations in illumination spectrum, and detector noise. This approach enables a rapid way of generating high-quality training data that covers different tissue types and skin pigmentation. Results The ANN implementation analyzes an image in 0.11 s, which is at least 10,000 times faster than inverse MC. The hardware modeling is significantly improved by an in-house calibration of the sensor spectral response. An in-vivo example shows that inverse MC and ANN give almost identicalSO 2 values with a mean absolute deviation of 1.3%-units. Conclusions ANN can replace inverse MC and enable real-time imaging of microcirculatorySO 2 in the skin if detailed and precise modeling of both tissue and hardware is used when generating training data.
Collapse
Affiliation(s)
- Marcus Larsson
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Maria Ewerlöf
- Linköping University, Department of Health, Medicine and Caring Sciences, Linköping, Sweden
| | - E. Göran Salerud
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Tomas Strömberg
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Ingemar Fredriksson
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
- Perimed AB, Stockholm, Sweden
| |
Collapse
|
9
|
Felicio-Briegel A, Linek M, Sroka R, Rühm A, Freymüller C, Stocker M, Baumeister P, Reichel C, Volgger V. Hyperspectral imaging for monitoring of free flaps of the oral cavity: A feasibility study. Lasers Surg Med 2024; 56:165-174. [PMID: 38247042 DOI: 10.1002/lsm.23756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Hyperspectral imaging (HSI) provides spectral information about hemoglobin, water and oxygen supply and has thus great potential in perfusion monitoring. The aim of the present study was to investigate the feasibility of HSI in the postoperative monitoring of intraoral free flaps. METHODS The 14 patients receiving reconstructive head and neck surgery with a radial forearm free flap were included. HSI was performed intraoperatively (t0), on Day 1 (t1), 2 (t2), 3-6 (t3), 7-9 (t4), 10-11 (t5) and 12-15 (t6) postoperatively. Flap tissue perfusion was assessed on defined regions of interest by calculating the perfusion indices Tissue Hemoglobin Index (THI), hemoglobin oxygenation (StO2 ), Near Infrared Perfusion Index (NIR Perfusion Index) and Tissue Water Index (TWI). RESULTS Image quality varied depending on location of the flap and time of measurement. StO2 was >50 intraoperatively and >40 on t1 for all patients. A significant difference was found solely for TWI between t0 and t2 and t0 and t4. No flap loss occurred. CONCLUSIONS The use of HSI in the monitoring of intraoral flaps is feasible and might become a valuable addition to the current clinical examination of free flaps.
Collapse
Affiliation(s)
| | - Matthäus Linek
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Freymüller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
| | - Magdalena Stocker
- Department of Otorhinolaryngology, University Hospital Salzburg, Salzburg, Austria
| | - Philipp Baumeister
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Reichel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany
| | - Veronika Volgger
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Merdasa A, Berggren J, Tenland K, Stridh M, Hernandez-Palacios J, Gustafsson N, Sheikh R, Malmsjö M. Oxygen saturation mapping during reconstructive surgery of human forehead flaps with hyperspectral imaging and spectral unmixing. Microvasc Res 2023; 150:104573. [PMID: 37390964 DOI: 10.1016/j.mvr.2023.104573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Optical spectroscopy is commonly used clinically to monitor oxygen saturation in tissue. The most commonly employed technique is pulse oximetry, which provides a point measurement of the arterial oxygen saturation and is commonly used for monitoring systemic hemodynamics, e.g. during anesthesia. Hyperspectral imaging (HSI) is an emerging technology that enables spatially resolved mapping of oxygen saturation in tissue (sO2), but needs to be further developed before implemented in clinical practice. The aim of this study is to demonstrate the applicability of HSI for mapping the sO2 in reconstructive surgery and demonstrate how spectral analysis can be used to obtain clinically relevant sO2 values. METHODS Spatial scanning HSI was performed on cutaneous forehead flaps, raised as part of a direct brow lift, in eight patients. Pixel-by-pixel spectral analysis, accounting for the absorption from multiple chromophores, was performed and compared to previous analysis techniques to assess sO2. RESULTS Spectral unmixing using a broad spectral range, and accounting for the absorption of melanin, fat, collagen, and water, provided a more clinically relevant estimate of sO2 than conventional techniques, where typically only spectral features associated with absorption of oxygenated (HbO2) and deoxygenated (HbR) hemoglobin are considered. We demonstrate its clinical applicability by generating sO2 maps of partially excised forehead flaps showed a gradual decrease in sO2 along the length of the flap from 95 % at the flap base to 85 % at the flap tip. After being fully excised, sO2 in the entire flap decreased to 50 % within a few minutes. CONCLUSIONS The results demonstrate the capability of sO2 mapping in reconstructive surgery in patients using HSI. Spectral unmixing, accounting for multiple chromophores, provides sO2 values that are in accordance with physiological expectations in patients with normal functioning microvascularization. Our results suggest that HSI methods that yield reliable spectra are to be preferred, so that the analysis can produce results that are of clinical relevance.
Collapse
Affiliation(s)
- Aboma Merdasa
- Department of Ophthalmology, Clinical Sciences Lund, Lund University, Sweden.
| | - Johanna Berggren
- Department of Ophthalmology, Clinical Sciences Lund, Lund University, Sweden; Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology Lund, Sweden
| | - Kajsa Tenland
- Department of Ophthalmology, Clinical Sciences Lund, Lund University, Sweden; Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology Lund, Sweden
| | - Magne Stridh
- Department of Ophthalmology, Clinical Sciences Lund, Lund University, Sweden; Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology Lund, Sweden
| | | | - Nils Gustafsson
- Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology Lund, Sweden
| | - Rafi Sheikh
- Department of Ophthalmology, Clinical Sciences Lund, Lund University, Sweden; Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology Lund, Sweden
| | - Malin Malmsjö
- Department of Ophthalmology, Clinical Sciences Lund, Lund University, Sweden; Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology Lund, Sweden
| |
Collapse
|
11
|
Schulz T, Nuwayhid R, Houschyar KS, Langer S, Kohler L. Diagnostical accuracy of hyperspectral imaging after free flap surgery. J Plast Surg Hand Surg 2023; 58:48-55. [PMID: 37614177 DOI: 10.2340/jphs.v58.7140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/25/2023] [Indexed: 08/25/2023]
Abstract
Microsurgical free-tissue transfer has been a safe option for tissue reconstruction. This study aimed to analyze the diagnostic accuracy of hyperspectral imaging (HSI) after free-tissue transfer surgery. From January 2017 to October 2019, 42 consecutive free-flap surgeries were performed, and their outcomes were analyzed via HSI. Clinical examination of free-flap perfusion was initially performed. Clinical examination findings were subsequently compared with those of HSI. Potential venous congestion with subsequent necrosis was defined as a tissue hemoglobin index of ≥53%. Student's t-test was used to compare the results of the analysis. The evaluation of sensitivity and specificity for flap failure detection was time dependent using the Fisher's exact test. A p-value of ≤0.05 was considered statistically significant. Microsurgical tissue transfer success rate was 84%. Seven patients presented with venous congestion that caused total flap necrosis. Overall, 124 assessments were made. HSI accurately identified 12 out of 19 pathological images: four as false positive and seven as false negative. The sensitivity and specificity of HSI were 57 and 94%, respectively, compared to those of clinical examination that were 28 and 100%, respectively, within 24 h following tissue transfer. The sensitivity and specificity of HSI were 63 and 96%, respectively, compared to those of clinical examination that were 63 and 100%, respectively, within the first 72 h. A tissue hemoglobin index of ≥53% could predict venous congestion after free-flap surgery. HSI demonstrated higher sensitivity than clinical examination within the first 24 h; however, it was not superior compared to clinical findings within 72 h.
Collapse
Affiliation(s)
- Torsten Schulz
- Department of Orthopedic, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany.
| | - Rima Nuwayhid
- Department of Orthopedic, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | | | - Stefan Langer
- Department of Orthopedic, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Lukas Kohler
- Department of Orthopedic, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany; Division of Hand-, Plastic- and Aesthetic Surgery, University Hospital Munich, Munich, Germany
| |
Collapse
|
12
|
Puustinen S, Vrzáková H, Hyttinen J, Rauramaa T, Fält P, Hauta-Kasari M, Bednarik R, Koivisto T, Rantala S, von Und Zu Fraunberg M, Jääskeläinen JE, Elomaa AP. Hyperspectral Imaging in Brain Tumor Surgery-Evidence of Machine Learning-Based Performance. World Neurosurg 2023; 175:e614-e635. [PMID: 37030483 DOI: 10.1016/j.wneu.2023.03.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared. METHODS We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods. RESULTS The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery. CONCLUSIONS In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems.
Collapse
Affiliation(s)
- Sami Puustinen
- University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Kuopio, Finland; Kuopio University Hospital, Eastern Finland Microsurgery Center, Kuopio, Finland.
| | - Hana Vrzáková
- Kuopio University Hospital, Eastern Finland Microsurgery Center, Kuopio, Finland; University of Eastern Finland, Faculty of Science and Forestry, School of Computing, Joensuu, Finland
| | - Joni Hyttinen
- University of Eastern Finland, Faculty of Science and Forestry, School of Computing, Joensuu, Finland
| | - Tuomas Rauramaa
- Kuopio University Hospital, Department of Clinical Pathology, Kuopio, Finland
| | - Pauli Fält
- University of Eastern Finland, Faculty of Science and Forestry, School of Computing, Joensuu, Finland
| | - Markku Hauta-Kasari
- University of Eastern Finland, Faculty of Science and Forestry, School of Computing, Joensuu, Finland
| | - Roman Bednarik
- University of Eastern Finland, Faculty of Science and Forestry, School of Computing, Joensuu, Finland
| | - Timo Koivisto
- Kuopio University Hospital, Department of Neurosurgery, Kuopio, Finland
| | - Susanna Rantala
- Kuopio University Hospital, Department of Neurosurgery, Kuopio, Finland
| | - Mikael von Und Zu Fraunberg
- Oulu University Hospital, Department of Neurosurgery, Oulu, Finland; University of Oulu, Faculty of Medicine, Research Unit of Clinical Medicine, Oulu, Finland
| | | | - Antti-Pekka Elomaa
- University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Kuopio, Finland; Kuopio University Hospital, Eastern Finland Microsurgery Center, Kuopio, Finland; Kuopio University Hospital, Department of Neurosurgery, Kuopio, Finland
| |
Collapse
|
13
|
Schalet G, Clenshaw M, Schulz S. The Recent Worldwide Shortage of Intravenous Contrast Dye: A Commentary on Its Implications for Plastic and Reconstructive Surgeons. Ann Plast Surg 2023; 90:531-532. [PMID: 37157148 DOI: 10.1097/sap.0000000000003554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Grant Schalet
- From the Department of Surgery, Broward Health Medical Center, Fort Lauderdale
| | - Michael Clenshaw
- From the Department of Surgery, Broward Health Medical Center, Fort Lauderdale
| | - Steven Schulz
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Broward Health Medical Center, Fort Lauderdale, FL
| |
Collapse
|
14
|
Ellebrecht DB. Hyperspectral imaging enables the differentiation of differentially inflated and perfused pulmonary tissue: a proof-of-concept study in pulmonary lobectomies for intersegmental plane mapping. BIOMED ENG-BIOMED TE 2023:bmt-2022-0389. [PMID: 36932645 DOI: 10.1515/bmt-2022-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVES The identification of the intersegmental plane is a major interoperative challenges during pulmonary segmentectomies. The objective of this pilot study is to test the feasibility of lung perfusion assessment by Hyperspectral Imaging for identification of the intersegmental plane. METHODS A pilot study (clinicaltrials.org: NCT04784884) was conducted in patients with lung cancer. Measuring tissue oxygenation (StO2; upper tissue perfusion), organ hemoglobin index (OHI), near-infrared index (NIR; deeper tissue perfusion) and tissue water index (TWI), the Hyperspectral Imaging measurements were carried out in inflated (Pvent) and deflated pulmonary lobes (PnV) as well as in deflated pulmonary lobes with divided circulation (PnVC) before dissection of the lobar bronchus. RESULTS A total of 341 measuring points were evaluated during pulmonary lobectomies. Pulmonary lobes showed a reduced StO2 (Pvent: 84.56% ± 3.92 vs. PnV: 63.62% ± 11.62 vs. PnVC: 39.20% ± 23.57; p<0.05) and NIR-perfusion (Pvent: 50.55 ± 5.62 vs. PnV: 47.55 ± 3.38 vs. PnVC: 27.60 ± 9.33; p<0.05). There were no differences of OHI and TWI between the three groups. CONCLUSIONS This pilot study demonstrates that HSI enables differentiation between different ventilated and perfused pulmonary tissue as a precondition for HSI segment mapping.
Collapse
Affiliation(s)
- David B Ellebrecht
- Department of Thoracic Surgery, LungClinic Großhansdorf, Großhansdorf, Germany
| |
Collapse
|
15
|
Ellebrecht DB, Kugler C. Intraoperative Determination of Bronchus Stump and Anastomosis Perfusion with Hyperspectral Imaging. Surg Innov 2023:15533506231157165. [PMID: 36802983 DOI: 10.1177/15533506231157165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND The intraoperative evaluation of bronchus perfusion is limited. Hyperspectral Imaging (HSI) is a newly established intraoperative imaging technique that enables a non-invasive, real-time perfusion analysis. Therefore, the purpose of this study was to determine the intraoperative perfusion of bronchus stump and anastomosis during pulmonary resections with HSI. METHODS In this prospective, IDEAL Stage 2a study (Clinicaltrials.gov: NCT04784884) HSI measurements were carried out before bronchial dissection and after bronchial stump formation or bronchial anastomosis, respectively. Tissue oxygenation (StO2; upper tissue perfusion), organ hemoglobin index (OHI), near-infrared index (NIR; deeper tissue perfusion) and tissue water index (TWI) were calculated. RESULTS Bronchus stumps showed a reduced NIR (77.82 ± 10.27 vs 68.01 ± 8.95; P = 0,02158) and OHI (48.60 ± 1.39 vs 38.15 ± 9.74; P = <.0001), although the perfusion of the upper tissue layers was equivalent before and after resection (67.42% ± 12.53 vs 65.91% ± 10.40). In the sleeve resection group, we found both a significant decrease in StO 2 and NIR between central bronchus and anastomosis region (StO2: 65.09% ± 12.57 vs 49.45 ± 9.94; P = .044; NIR: 83.73 ± 10.92 vs 58.62 ± 3.01; P = .0063). Additionally, NIR was decreased in the re-anastomosed bronchus compared to central bronchus region (83.73 ± 10.92 vs 55.15 ± 17.56; P = .0029). CONCLUSIONS Although both bronchus stumps and anastomosis show an intraoperative reduction of tissue perfusion, there is no difference of tissue hemoglobin level in bronchus anastomosis.
Collapse
Affiliation(s)
- David B Ellebrecht
- Department of Surgery, 9213LungClinic Großhansdorf, Großhansdorf, Germany
| | - Christian Kugler
- Department of Surgery, 9213LungClinic Großhansdorf, Großhansdorf, Germany
| |
Collapse
|
16
|
Schraven SP, Kossack B, Strüder D, Jung M, Skopnik L, Gross J, Hilsmann A, Eisert P, Mlynski R, Wisotzky EL. Continuous intraoperative perfusion monitoring of free microvascular anastomosed fasciocutaneous flaps using remote photoplethysmography. Sci Rep 2023; 13:1532. [PMID: 36707664 PMCID: PMC9883527 DOI: 10.1038/s41598-023-28277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
Flap loss through limited perfusion remains a major complication in reconstructive surgery. Continuous monitoring of perfusion will facilitate early detection of insufficient perfusion. Remote or imaging photoplethysmography (rPPG/iPPG) as a non-contact, non-ionizing, and non-invasive monitoring technique provides objective and reproducible information on physiological parameters. The aim of this study is to establish rPPG for intra- and postoperative monitoring of flap perfusion in patients undergoing reconstruction with free fasciocutaneous flaps (FFCF). We developed a monitoring algorithm for flap perfusion, which was evaluated in 15 patients. For 14 patients, ischemia of the FFCF in the forearm and successful reperfusion of the implanted FFCF was quantified based on the local signal. One FFCF showed no perfusion after reperfusion and devitalized in the course. Intraoperative monitoring of perfusion with rPPG provides objective and reproducible results. Therefore, rPPG is a promising technology for standard flap perfusion monitoring on low costs without the need for additional monitoring devices.
Collapse
Affiliation(s)
- Sebastian P Schraven
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany.
| | - Benjamin Kossack
- Vision and Imaging Technologies, Fraunhofer Heinrich Hertz Institute HHI, Einsteinufer 37, 10587, Berlin, Germany.
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany
| | - Maximillian Jung
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany
| | - Lotte Skopnik
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany
| | - Justus Gross
- Department of General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany
| | - Anna Hilsmann
- Vision and Imaging Technologies, Fraunhofer Heinrich Hertz Institute HHI, Einsteinufer 37, 10587, Berlin, Germany
| | - Peter Eisert
- Vision and Imaging Technologies, Fraunhofer Heinrich Hertz Institute HHI, Einsteinufer 37, 10587, Berlin, Germany
- Visual Computing, Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Robert Mlynski
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany
| | - Eric L Wisotzky
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany.
- Vision and Imaging Technologies, Fraunhofer Heinrich Hertz Institute HHI, Einsteinufer 37, 10587, Berlin, Germany.
- Visual Computing, Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| |
Collapse
|
17
|
Knoedler S, Hoch CC, Huelsboemer L, Knoedler L, Stögner VA, Pomahac B, Kauke-Navarro M, Colen D. Postoperative free flap monitoring in reconstructive surgery-man or machine? Front Surg 2023; 10:1130566. [PMID: 36911625 PMCID: PMC9992807 DOI: 10.3389/fsurg.2023.1130566] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Free tissue transfer is widely used for the reconstruction of complex tissue defects. The survival of free flaps depends on the patency and integrity of the microvascular anastomosis. Accordingly, the early detection of vascular comprise and prompt intervention are indispensable to increase flap survival rates. Such monitoring strategies are commonly integrated into the perioperative algorithm, with clinical examination still being considered the gold standard for routine free flap monitoring. Despite its widespread acceptance as state of the art, the clinical examination also has its pitfalls, such as the limited applicability in buried flaps and the risk of poor interrater agreement due to inconsistent flap (failure) appearances. To compensate for these shortcomings, a plethora of alternative monitoring tools have been proposed in recent years, each of them with inherent strengths and limitations. Given the ongoing demographic change, the number of older patients requiring free flap reconstruction, e.g., after cancer resection, is rising. Yet, age-related morphologic changes may complicate the free flap evaluation in elderly patients and delay the prompt detection of clinical signs of flap compromise. In this review, we provide an overview of currently available and employed methods for free flap monitoring, with a special focus on elderly patients and how senescence may impact standard free flap monitoring strategies.
Collapse
Affiliation(s)
- Samuel Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Department of Surgery, Division of Plastic Surgery, Yale School of Medicine, Yale New Haven Hospital,New Haven, CT, United States
- Correspondence: Samuel Knoedler Martin Kauke-Navarro
| | - Cosima C. Hoch
- Department of Otolaryngology, Head and Neck Surgery, Rechts der Isar Hospital, Technical University Munich, Munich, Germany
| | - Lioba Huelsboemer
- Department of Surgery, Division of Plastic Surgery, Yale School of Medicine, Yale New Haven Hospital,New Haven, CT, United States
| | - Leonard Knoedler
- Department of Surgery, Division of Plastic Surgery, Yale School of Medicine, Yale New Haven Hospital,New Haven, CT, United States
| | - Viola A. Stögner
- Department of Surgery, Division of Plastic Surgery, Yale School of Medicine, Yale New Haven Hospital,New Haven, CT, United States
| | - Bohdan Pomahac
- Department of Surgery, Division of Plastic Surgery, Yale School of Medicine, Yale New Haven Hospital,New Haven, CT, United States
| | - Martin Kauke-Navarro
- Department of Surgery, Division of Plastic Surgery, Yale School of Medicine, Yale New Haven Hospital,New Haven, CT, United States
- Correspondence: Samuel Knoedler Martin Kauke-Navarro
| | - David Colen
- Department of Surgery, Division of Plastic Surgery, Yale School of Medicine, Yale New Haven Hospital,New Haven, CT, United States
| |
Collapse
|
18
|
Ye W, Xu W, Yan T, Yan J, Gao P, Zhang C. Application of Near-Infrared Spectroscopy and Hyperspectral Imaging Combined with Machine Learning Algorithms for Quality Inspection of Grape: A Review. Foods 2022; 12:foods12010132. [PMID: 36613348 PMCID: PMC9818947 DOI: 10.3390/foods12010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Grape is a fruit rich in various vitamins, and grape quality is increasingly highly concerned with by consumers. Traditional quality inspection methods are time-consuming, laborious and destructive. Near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) are rapid, non-destructive and accurate techniques for quality inspection and safety assessment of agricultural products, which have great potential in recent years. The review summarized the applications and achievements of NIRS and HSI for the quality inspection of grapes for the last ten years. The review introduces basic principles, signal mode, data acquisition, analysis and processing of NIRS and HSI data. Qualitative and quantitative analysis were involved and compared, respectively, based on spectral features, image features and fusion data. The advantages, disadvantages and development trends of NIRS and HSI techniques in grape quality and safety inspection are summarized and discussed. The successful application of NIRS and HSI in grape quality inspection shows that many fruit inspection tasks could be assisted with NIRS and HSI.
Collapse
Affiliation(s)
- Weixin Ye
- College of Information Science and Technology, Shihezi University, Shihezi 832003, China
| | - Wei Xu
- College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Tianying Yan
- College of Information Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jingkun Yan
- College of Information Science and Technology, Shihezi University, Shihezi 832003, China
| | - Pan Gao
- College of Information Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (P.G.); (C.Z.)
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou 313000, China
- Correspondence: (P.G.); (C.Z.)
| |
Collapse
|
19
|
Imaging perfusion changes in oncological clinical applications by hyperspectral imaging: a literature review. Radiol Oncol 2022; 56:420-429. [PMID: 36503709 PMCID: PMC9784371 DOI: 10.2478/raon-2022-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hyperspectral imaging (HSI) is a promising imaging modality that uses visible light to obtain information about blood flow. It has the distinct advantage of being noncontact, nonionizing, and noninvasive without the need for a contrast agent. Among the many applications of HSI in the medical field are the detection of various types of tumors and the evaluation of their blood flow, as well as the healing processes of grafts and wounds. Since tumor perfusion is one of the critical factors in oncology, we assessed the value of HSI in quantifying perfusion changes during interventions in clinical oncology through a systematic review of the literature. MATERIALS AND METHODS The PubMed and Web of Science electronic databases were searched using the terms "hyperspectral imaging perfusion cancer" and "hyperspectral imaging resection cancer". The inclusion criterion was the use of HSI in clinical oncology, meaning that all animal, phantom, ex vivo, experimental, research and development, and purely methodological studies were excluded. RESULTS Twenty articles met the inclusion criteria. The anatomic locations of the neoplasms in the selected articles were as follows: kidneys (1 article), breasts (2 articles), eye (1 article), brain (4 articles), entire gastrointestinal (GI) tract (1 article), upper GI tract (5 articles), and lower GI tract (6 articles). CONCLUSIONS HSI is a potentially attractive imaging modality for clinical application in oncology, with assessment of mastectomy skin flap perfusion after reconstructive breast surgery and anastomotic perfusion during reconstruction of gastrointenstinal conduit as the most promising at present.
Collapse
|
20
|
Becker P, Blatt S, Pabst A, Heimes D, Al-Nawas B, Kämmerer PW, Thiem DGE. Comparison of Hyperspectral Imaging and Microvascular Doppler for Perfusion Monitoring of Free Flaps in an In Vivo Rodent Model. J Clin Med 2022; 11:jcm11144134. [PMID: 35887901 PMCID: PMC9321983 DOI: 10.3390/jcm11144134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
To reduce microvascular free flap failure (MFF), monitoring is crucial for the early detection of malperfusion and allows timely salvage. Therefore, the aim of this study was to evaluate hyperspectral imaging (HSI) in comparison to micro-Doppler sonography (MDS) to monitor MFF perfusion in an in vivo rodent model. Bilateral groin flaps were raised on 20 Sprague−Dawley rats. The femoral artery was transected on the trial side and re-anastomosed. Flaps and anastomoses were assessed before, during, and after the period of ischemia every ten minutes for overall 60 min using HSI and MDS. The contralateral sides’ flaps served as controls. Tissue-oxygenation saturation (StO2), near-infrared perfusion index (NPI), hemoglobin (THI), and water distribution (TWI) were assessed by HSI, while blood flow was assessed by MDS. HSI correlates with the MDS signal in the case of sufficient and completely interrupted perfusion. HSI was able to validly and reproducibly detect tissue perfusion status using StO2 and NPI. After 40 min, flap perfusion decreased due to the general aggravation of hemodynamic circulatory situation, which resulted in a significant drop of StO2 (p < 0.005) and NPI (p < 0.005), whereas the Doppler signal remained unchanged. In accordance, HSI might be suitable to detect MFF general complications in an early stage and further decrease MFF failure rates, whereas MDS may only be used for direct complications at the anastomose site.
Collapse
Affiliation(s)
- Philipp Becker
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072 Koblenz, Germany;
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
- Correspondence:
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| | - Andreas Pabst
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072 Koblenz, Germany;
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| | - Diana Heimes
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| | - Daniel G. E. Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| |
Collapse
|
21
|
Pruimboom T, Lindelauf AAMA, Felli E, Sawor JH, Deliaert AEK, van der Hulst RRWJ, Al-Taher M, Diana M, Schols RM. Perioperative Hyperspectral Imaging to Assess Mastectomy Skin Flap and DIEP Flap Perfusion in Immediate Autologous Breast Reconstruction: A Pilot Study. Diagnostics (Basel) 2022; 12:diagnostics12010184. [PMID: 35054352 PMCID: PMC8774932 DOI: 10.3390/diagnostics12010184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022] Open
Abstract
Mastectomy skin flap necrosis (MSFN) and partial DIEP (deep inferior epigastric artery perforator) flap loss represent two frequently reported complications in immediate autologous breast reconstruction. These complications could be prevented when areas of insufficient tissue perfusion are detected intraoperatively. Hyperspectral imaging (HSI) is a relatively novel, non-invasive imaging technique, which could be used to objectively assess tissue perfusion through analysis of tissue oxygenation patterns (StO2%), near-infrared (NIR%), tissue hemoglobin (THI%), and tissue water (TWI%) perfusion indices. This prospective clinical pilot study aimed to evaluate the efficacy of HSI for tissue perfusion assessment and to identify a cut-off value for flap necrosis. Ten patients with a mean age of 55.4 years underwent immediate unilateral autologous breast reconstruction. Prior, during and up to 72 h after surgery, a total of 19 hyperspectral images per patient were acquired. MSFN was observed in 3 out of 10 patients. No DIEP flap necrosis was observed. In all MSFN cases, an increased THI% and decreased StO2%, NIR%, and TWI% were observed when compared to the vital group. StO2% was found to be the most sensitive parameter to detect MSFN with a statistically significant lower mean StO2% (51% in the vital group versus 32% in the necrosis group, p < 0.0001) and a cut-off value of 36.29% for flap necrosis. HSI has the potential to accurately assess mastectomy skin flap perfusion and discriminate between vital and necrotic skin flap during the early postoperative period prior to clinical observation. Although the results should be confirmed in future studies, including DIEP flap necrosis specifically, these findings suggest that HSI can aid clinicians in postoperative mastectomy skin flap and DIEP flap monitoring.
Collapse
Affiliation(s)
- Tim Pruimboom
- Department of Plastic, Reconstructive and Hand Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
- Correspondence: (T.P.); (R.M.S.); Tel.: +31-(0)43-3877481 (T.P. & R.M.S.)
| | - Anouk A. M. A. Lindelauf
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - Eric Felli
- Department of Visceral Surgery and Medicine, University of Bern, 3010 Bern, Switzerland;
- Department of Biomedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - John H. Sawor
- Department of Plastic, Reconstructive, and Hand Surgery, VieCuri Medical Center, 5912 BL Venlo, The Netherlands; (J.H.S.); (A.E.K.D.)
| | - An E. K. Deliaert
- Department of Plastic, Reconstructive, and Hand Surgery, VieCuri Medical Center, 5912 BL Venlo, The Netherlands; (J.H.S.); (A.E.K.D.)
| | - René R. W. J. van der Hulst
- Department of Plastic, Reconstructive and Hand Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Mahdi Al-Taher
- Department of Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
- Research Institute Against Digestive Cancer (IRCAD), 67000 Strasbourg, France;
| | - Michele Diana
- Research Institute Against Digestive Cancer (IRCAD), 67000 Strasbourg, France;
- Department of General, Digestive and Endocrine Surgery, University Hospital of Strasbourg, 67200 Strasbourg, France
- ICube Lab, Photonics for Health, University of Strasbourg, 67400 Strasbourg, France
| | - Rutger M. Schols
- Department of Plastic, Reconstructive and Hand Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
- Correspondence: (T.P.); (R.M.S.); Tel.: +31-(0)43-3877481 (T.P. & R.M.S.)
| |
Collapse
|
22
|
Abstract
AbstractMeasuring morphological and biochemical features of tissue is crucial for disease diagnosis and surgical guidance, providing clinically significant information related to pathophysiology. Hyperspectral imaging (HSI) techniques obtain both spatial and spectral features of tissue without labeling molecules such as fluorescent dyes, which provides rich information for improved disease diagnosis and treatment. Recent advances in HSI systems have demonstrated its potential for clinical applications, especially in disease diagnosis and image-guided surgery. This review summarizes the basic principle of HSI and optical systems, deep-learning-based image analysis, and clinical applications of HSI to provide insight into this rapidly growing field of research. In addition, the challenges facing the clinical implementation of HSI techniques are discussed.
Collapse
|
23
|
Lindelauf AAMA, Saelmans AG, van Kuijk SMJ, van der Hulst RRWJ, Schols RM. Near-Infrared Spectroscopy (NIRS) versus Hyperspectral Imaging (HSI) to Detect Flap Failure in Reconstructive Surgery: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010065. [PMID: 35054458 PMCID: PMC8778121 DOI: 10.3390/life12010065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/28/2022]
Abstract
Rapid identification of possible vascular compromise in free flap reconstruction to minimize time to reoperation improves achieving free flap salvage. Subjective clinical assessment, often complemented with handheld Doppler, is the golden standard for flap monitoring; but this lacks consistency and may be variable. Non-invasive optical methods such as near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) could facilitate objective flap monitoring. A systematic review was conducted to compare NIRS with HSI in detecting vascular compromise in reconstructive flap surgery as compared to standard monitoring. A literature search was performed using PubMed and Embase scientific database in August 2021. Studies were selected by two independent reviewers. Sixteen NIRS and five HSI studies were included. In total, 3662 flap procedures were carried out in 1970 patients using NIRS. Simultaneously; 90 flaps were performed in 90 patients using HSI. HSI and NIRS flap survival were 92.5% (95% CI: 83.3–96.8) and 99.2% (95% CI: 97.8–99.7). Statistically significant differences were observed in flap survival (p = 0.02); flaps returned to OR (p = 0.04); salvage rate (p < 0.01) and partial flap loss rate (p < 0.01). However, no statistically significant difference was observed concerning flaps with vascular crisis (p = 0.39). NIRS and HSI have proven to be reliable; accurate and user-friendly monitoring methods. However, based on the currently available literature, no firm conclusions can be drawn concerning non-invasive monitoring technique superiority
Collapse
Affiliation(s)
- Anouk A. M. A. Lindelauf
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands;
- Correspondence: (A.A.M.A.L.); (R.M.S.); Tel.: +31-433875318 (A.A.M.A.L.); Fax: +31-433875075 (A.A.M.A.L.)
| | - Alexander G. Saelmans
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands;
- Department of Plastic, Reconstructive and Hand Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - Sander M. J. van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - René R. W. J. van der Hulst
- Department of Plastic, Reconstructive and Hand Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - Rutger M. Schols
- Department of Plastic, Reconstructive and Hand Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
- Correspondence: (A.A.M.A.L.); (R.M.S.); Tel.: +31-433875318 (A.A.M.A.L.); Fax: +31-433875075 (A.A.M.A.L.)
| |
Collapse
|
24
|
Barberio M, Benedicenti S, Pizzicannella M, Felli E, Collins T, Jansen-Winkeln B, Marescaux J, Viola MG, Diana M. Intraoperative Guidance Using Hyperspectral Imaging: A Review for Surgeons. Diagnostics (Basel) 2021; 11:diagnostics11112066. [PMID: 34829413 PMCID: PMC8624094 DOI: 10.3390/diagnostics11112066] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperspectral imaging (HSI) is a novel optical imaging modality, which has recently found diverse applications in the medical field. HSI is a hybrid imaging modality, combining a digital photographic camera with a spectrographic unit, and it allows for a contactless and non-destructive biochemical analysis of living tissue. HSI provides quantitative and qualitative information of the tissue composition at molecular level in a contrast-free manner, hence making it possible to objectively discriminate between different tissue types and between healthy and pathological tissue. Over the last two decades, HSI has been increasingly used in the medical field, and only recently it has found an application in the operating room. In the last few years, several research groups have used this imaging modality as an intraoperative guidance tool within different surgical disciplines. Despite its great potential, HSI still remains far from being routinely used in the daily surgical practice, since it is still largely unknown to most of the surgical community. The aim of this study is to provide clinical surgeons with an overview of the capabilities, current limitations, and future directions of HSI for intraoperative guidance.
Collapse
Affiliation(s)
- Manuel Barberio
- Institute for Research against Digestive Cancer (IRCAD), 67091 Strasbourg, France; (T.C.); (J.M.); (M.D.)
- General Surgery Department, Ospedale Card. G. Panico, 73039 Tricase, Italy; (S.B.); (M.P.); (M.G.V.)
- Correspondence:
| | - Sara Benedicenti
- General Surgery Department, Ospedale Card. G. Panico, 73039 Tricase, Italy; (S.B.); (M.P.); (M.G.V.)
| | - Margherita Pizzicannella
- General Surgery Department, Ospedale Card. G. Panico, 73039 Tricase, Italy; (S.B.); (M.P.); (M.G.V.)
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, 3008 Bern, Switzerland
| | - Toby Collins
- Institute for Research against Digestive Cancer (IRCAD), 67091 Strasbourg, France; (T.C.); (J.M.); (M.D.)
| | | | - Jacques Marescaux
- Institute for Research against Digestive Cancer (IRCAD), 67091 Strasbourg, France; (T.C.); (J.M.); (M.D.)
| | - Massimo Giuseppe Viola
- General Surgery Department, Ospedale Card. G. Panico, 73039 Tricase, Italy; (S.B.); (M.P.); (M.G.V.)
| | - Michele Diana
- Institute for Research against Digestive Cancer (IRCAD), 67091 Strasbourg, France; (T.C.); (J.M.); (M.D.)
- ICube Laboratory, Photonics Instrumentation for Health, University of Strasbourg, 67400 Strasbourg, France
| |
Collapse
|
25
|
New Approach to the Old Challenge of Free Flap Monitoring-Hyperspectral Imaging Outperforms Clinical Assessment by Earlier Detection of Perfusion Failure. J Pers Med 2021; 11:jpm11111101. [PMID: 34834453 PMCID: PMC8625540 DOI: 10.3390/jpm11111101] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
In reconstructive surgery, free flap failure, especially in complex osteocutaneous reconstructions, represents a significant clinical burden. Therefore, the aim of the presented study was to assess hyperspectral imaging (HSI) for monitoring of free flaps compared to clinical monitoring. In a prospective, non-randomized clinical study, patients with free flap reconstruction of the oro-maxillofacial-complex were included. Monitoring was assessed clinically and by using hyperspectral imaging (TIVITA™ Tissue-System, DiaspectiveVision GmbH, Pepelow, Germany) to determine tissue-oxygen-saturation [StO2], near-infrared-perfusion-index [NPI], distribution of haemoglobin [THI] and water [TWI], and variance to an adjacent reference area (Δreference). A total of 54 primary and 11 secondary reconstructions were performed including fasciocutaneous and osteocutaneous flaps. Re-exploration was performed in 19 cases. A total of seven complete flap failures occurred, resulting in a 63% salvage rate. Mean time from flap inset to decision making for re-exploration based on clinical assessment was 23.1 ± 21.9 vs. 18.2 ± 19.4 h by the appearance of hyperspectral criteria indicating impaired perfusion (StO2 ≤ 32% OR StO2Δreference > −38% OR NPI ≤ 32.9 OR NPIΔreference ≥ −13.4%) resulting in a difference of 4.8 ± 5 h (p < 0.001). HSI seems able to detect perfusion compromise significantly earlier than clinical monitoring. These findings provide an interpretation aid for clinicians to simplify postoperative flap monitoring.
Collapse
|
26
|
Nischwitz SP, Luze H, Schellnegger M, Gatterer SJ, Tuca AC, Winter R, Kamolz LP. Thermal, Hyperspectral, and Laser Doppler Imaging: Non-Invasive Tools for Detection of The Deep Inferior Epigastric Artery Perforators-A Prospective Comparison Study. J Pers Med 2021; 11:jpm11101005. [PMID: 34683146 PMCID: PMC8538291 DOI: 10.3390/jpm11101005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Perforator flaps have become one of the leading procedures in microsurgical tissue transfer. Individual defects require a tailored approach to guarantee the most effective treatment. A thorough understanding of the individual vascular anatomy and the location of prominent perforators is of utmost importance and usually requires invasive angiography or at least acoustic Doppler exploration. In this study, we aimed at evaluating different non-invasive imaging modalities as possible alternatives for perforator location detection. After a cooling phase, we performed thermal, hyperspectral and Laser Doppler imaging and visually evaluated a possible detection of the perforator for a period of five minutes with an image taken every minute. We identified the most prominent perforator of the deep inferior epigastric artery by handheld acoustic Doppler in 18 patients. The detected perforator locations were then correlated. Eighteen participants were assessed with six images each per imaging method. We could show a positive match for 94.44%, 38.89%, and 0% of patients and 92.59%, 25.93%, and 0% of images for the methods respectively compared to the handheld acoustic Doppler. Sex, age, abdominal girth, and BMI showed no correlation with a possible visual detection of the perforator in the images. Therefore, thermal imaging can yield valuable supporting data in the individualized procedure planning. Future larger cohort studies are required to better assess the full potential of modern handheld thermal imaging devices.
Collapse
Affiliation(s)
- Sebastian P. Nischwitz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (H.L.); (A.-C.T.); (R.W.); (L.-P.K.)
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria;
- Correspondence:
| | - Hanna Luze
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (H.L.); (A.-C.T.); (R.W.); (L.-P.K.)
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria;
| | - Marlies Schellnegger
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria;
- Division of Macroscopic and Clinical Anatomy, Medical University of Graz, 8036 Graz, Austria
| | | | - Alexandru-Cristian Tuca
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (H.L.); (A.-C.T.); (R.W.); (L.-P.K.)
| | - Raimund Winter
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (H.L.); (A.-C.T.); (R.W.); (L.-P.K.)
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (H.L.); (A.-C.T.); (R.W.); (L.-P.K.)
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria;
| |
Collapse
|
27
|
Evaluation of Predictive Values of an Automatic Device Measuring Oximetry in Free Flaps. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3819. [PMID: 34584825 PMCID: PMC8460219 DOI: 10.1097/gox.0000000000003819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
Free-flap monitoring is challenging to perform in some centers. It requires the availability of trained health care personnel for 24 hours a day and seven days a week. Many methods had been proposed for flap monitoring, and none of them are superior to clinical evaluation. This study aimed to present a murine model to evaluate the accuracy (sensitivity, specificity, and the positive or negative predictive values) of a device. Wistar rats weighing 240–490 g were included for intervention and data collection. A murine model of left inferior epigastric vessel flaps was implemented. Intermittent pedicle clamping was performed to calculate the accuracy of the device that detects flow obstruction. The general variables studied were age, weight, and gender. The sensitivity, specificity, and negative or predictive values were calculated. The results showed a sensitivity of 97%, a specificity of 95% with a positive predictive value of 95%, and negative predictive value of 97%. The sensitivity and specificity showed excellent results within the range of clinical security. We require more data to analyze the multiparameter monitoring to see if it is feasible and cost-effective.
Collapse
|