1
|
Yamato M, Dai T, Murata Y, Nakagawa T, Kikuchi S, Matsubara D, Noguchi M. High expression of eukaryotic elongation factor 1-alpha-2 in lung adenocarcinoma is associated with poor prognosis. Pathol Int 2024; 74:454-463. [PMID: 38874190 DOI: 10.1111/pin.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Eukaryotic elongation factor 1 alpha 2 (eEF1A2) encodes an isoform of the alpha subunit of the elongation factor 1 complex and is responsible for the enzymatic delivery of aminoacyl tRNA to the ribosome. Our proteomic analysis has identified eEF1A2 as one of the proteins expressed during malignant progression from adenocarcinoma in situ (AIS) to early invasive lung adenocarcinoma. The expression level of eEF1A2 in 175 lung adenocarcinomas was examined by immunohistochemical staining in relation to patient prognosis and clinicopathological factors. Quantitative PCR analysis and fluorescence in situ hybridization (FISH) were performed to evaluate the amplification of the eEF1A2 gene. Relatively high expression of eEF1A2 was observed in invasive adenocarcinoma (39/144 cases) relative to minimally invasive adenocarcinoma (1/10 cases) or AIS (0/21 cases). Among invasive adenocarcinomas, solid-type adenocarcinoma (15/32 cases, 47%) showed higher expression than other histological subtypes (23/92, 25%). Patients with eEF1A2-positive tumors had a significantly poorer prognosis than those with eEF1A2-negative tumors. Of the five tumors that were eEF1A2-positive, two cases showed amplified genomic eEF1A2 DNA, which was confirmed by both qPCR and FISH. These findings indicate that eEF1A2 overexpression occurs in the course of malignant transformation of lung adenocarcinomas and is partly due to eEF1A2 gene amplification.
Collapse
Affiliation(s)
- Mariko Yamato
- Department of Pathology, University of Tsukuba Hospital, Ibaraki, Japan
- Department of Diagnostic Pathology, University of Tsukuba, Ibaraki, Japan
| | - Tomoko Dai
- Department of Diagnostic Pathology, University of Tsukuba, Ibaraki, Japan
- Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Yoshihiko Murata
- Department of Pathology, University of Tsukuba Hospital, Ibaraki, Japan
- Department of Diagnostic Pathology, University of Tsukuba, Ibaraki, Japan
| | - Tomoki Nakagawa
- Department of Pathology, University of Tsukuba Hospital, Ibaraki, Japan
- Department of Diagnostic Pathology, University of Tsukuba, Ibaraki, Japan
| | - Shinji Kikuchi
- Department of Thoracic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- Department of Thoracic Surgery, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Daisuke Matsubara
- Department of Pathology, University of Tsukuba Hospital, Ibaraki, Japan
- Department of Diagnostic Pathology, University of Tsukuba, Ibaraki, Japan
| | - Masayuki Noguchi
- Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Japan
- Department of Pathology, Narita Tomisato Tokushukai Hospital, Chiba, Japan
| |
Collapse
|
2
|
Kang W, Ye C, Yang Y, Lou YR, Zhao M, Wang Z, Gao Y. Identification of anoikis-related gene signatures and construction of the prognosis model in prostate cancer. Front Pharmacol 2024; 15:1383304. [PMID: 38957390 PMCID: PMC11217483 DOI: 10.3389/fphar.2024.1383304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Background One of the primary reasons for tumor invasion and metastasis is anoikis resistance. Biochemical recurrence (BCR) of prostate cancer (PCa) serves as a harbinger of its distant metastasis. However, the role of anoikis in PCa biochemical recurrence has not been fully elucidated. Methods Differential expression analysis was used to identify anoikis-related genes based on the TCGA and GeneCards databases. Prognostic models were constructed utilizing LASSO regression, univariate and multivariate Cox regression analyses. Moreover, Gene Expression Omnibus datasets (GSE70770 and GSE46602) were applied as validation cohorts. Gene Ontology, KEGG and GSVA were utilized to explore biological pathways and molecular mechanisms. Further, immune profiles were assessed using CIBERSORT, ssGSEA, and TIDE, while anti-cancer drugs sensitivity was analyzed by GDSC database. In addition, gene expressions in the model were examined using online databases (Human Protein Atlas and Tumor Immune Single-Cell Hub). Results 113 differentially expressed anoikis-related genes were found. Four genes (EEF1A2, RET, FOSL1, PCA3) were selected for constructing a prognostic model. Using the findings from the Cox regression analysis, we grouped patients into groups of high and low risk. The high-risk group exhibited a poorer prognosis, with a maximum AUC of 0.897. Moreover, larger percentage of immune infiltration of memory B cells, CD8 Tcells, neutrophils, and M1 macrophages were observed in the high-risk group than those in the low-risk group, whereas the percentage of activated mast cells and dendritic cells in the high-risk group were lower. An increased TIDE score was founded in the high-risk group, suggesting reduced effectiveness of ICI therapy. Additionally, the IC50 results for chemotherapy drugs indicated that the low-risk group was more sensitive to most of the drugs. Finally, the genes EEF1A2, RET, and FOSL1 were expressed in PCa cases based on HPA website. The TISCH database suggested that these four ARGs might contribute to the tumor microenvironment of PCa. Conclusion We created a risk model utilizing four ARGs that effectively predicts the risk of BCR in PCa patients. This study lays the groundwork for risk stratification and predicting survival outcomes in PCa patients with BCR.
Collapse
Affiliation(s)
- Wanying Kang
- School of Pharmacy, Fudan University, Shanghai, China
- Life Science and Biopharmaceutical College, Shenyang Pharmaceutical University, Shenyang, China
| | - Chen Ye
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yunyun Yang
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Ru Lou
- School of Pharmacy, Fudan University, Shanghai, China
| | - Mingyi Zhao
- Life Science and Biopharmaceutical College, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Wang
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
4
|
Patel SA, Hassan MK, Naik M, Mohapatra N, Balan P, Korrapati PS, Dixit M. EEF1A2 promotes HIF1A mediated breast cancer angiogenesis in normoxia and participates in a positive feedback loop with HIF1A in hypoxia. Br J Cancer 2024; 130:184-200. [PMID: 38012382 PMCID: PMC10803557 DOI: 10.1038/s41416-023-02509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The eukaryotic elongation factor, EEF1A2, has been identified as an oncogene in various solid tumors. Here, we have identified a novel function of EEF1A2 in angiogenesis. METHODS Chick chorioallantoic membrane, tubulogenesis, aortic ring, Matrigel plug, and skin wound healing assays established EEF1A2's role in angiogenesis. RESULT Higher EEF1A2 levels in breast cancer cells enhanced cell growth, movement, blood vessel function, and tubule formation in HUVECs, as confirmed by ex-ovo and in-vivo tests. The overexpression of EEF1A2 could be counteracted by Plitidepsin. Under normoxic conditions, EEF1A2 triggered HIF1A expression via ERK-Myc and mTOR signaling in TNBC and ER/PR positive cells. Hypoxia induced the expression of EEF1A2, leading to a positive feedback loop between EEF1A2 and HIF1A. Luciferase assay and EMSA confirmed HIF1A binding on the EEF1A2 promoter, which induced its transcription. RT-PCR and polysome profiling validated that EEF1A2 affected VEGF transcription and translation positively. This led to increased VEGF release from breast cancer cells, activating ERK and PI3K-AKT signaling in endothelial cells. Breast cancer tissues with elevated EEF1A2 showed higher microvessel density. CONCLUSION EEF1A2 exhibits angiogenic potential in both normoxic and hypoxic conditions, underscoring its dual role in promoting EMT and angiogenesis, rendering it a promising target for cancer therapy.
Collapse
Affiliation(s)
- Saket Awadhesbhai Patel
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, 752050, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Md Khurshidul Hassan
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, 752050, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Monali Naik
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, 752050, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Nachiketa Mohapatra
- Apollo Hospitals, Plot No. 251,Old Sainik School Road, Bhubaneswar, 750015, Odisha, India
| | - Poornima Balan
- CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai, 600020, India
| | - Purna Sai Korrapati
- CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai, 600020, India
| | - Manjusha Dixit
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, 752050, Odisha, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
5
|
Patel SA, Hassan MK, Dixit M. Oncogenic activation of EEF1A2 expression: a journey from a putative to an established oncogene. Cell Mol Biol Lett 2024; 29:6. [PMID: 38172654 PMCID: PMC10765684 DOI: 10.1186/s11658-023-00519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Protein synthesis via translation is a central process involving several essential proteins called translation factors. Although traditionally described as cellular "housekeepers," multiple studies have now supported that protein initiation and elongation factors regulate cell growth, apoptosis, and tumorigenesis. One such translation factor is eukaryotic elongation factor 1 alpha 2 (EEF1A2), a member of the eukaryotic elongation factor family, which has a canonical role in the delivery of aminoacyl-tRNA to the A-site of the ribosome in a guanosine 5'-triphosphate (GTP)-dependent manner. EEF1A2 differs from its closely related isoform, EEF1A1, in tissue distribution. While EEF1A1 is present ubiquitously, EEF1A2 replaces it in specialized tissues. The reason why certain specialized tissues need to essentially switch EEF1A1 expression altogether with EEF1A2 remains to be answered. Abnormal "switch on" of the EEF1A2 gene in normal tissues is witnessed and is seen as a cause of oncogenic transformation in a wide variety of solid tumors. This review presents the journey of finding increased expression of EEF1A2 in multiple cancers, establishing molecular mechanism, and exploring it as a target for cancer therapy. More precisely, we have compiled studies in seven types of cancers that have reported EEF1A2 overexpression. We have discussed the effect of aberrant EEF1A2 expression on the oncogenic properties of cells, signaling pathways, and interacting partners of EEF1A2. More importantly, in the last part, we have discussed the unique potential of EEF1A2 as a therapeutic target. This review article gives an up-to-date account of EEF1A2 as an oncogene and can draw the attention of the scientific community, attracting more research.
Collapse
Affiliation(s)
- Saket Awadhesbhai Patel
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, P.O. Jatni, Khurda, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Md Khurshidul Hassan
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, P.O. Jatni, Khurda, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, P.O. Jatni, Khurda, Bhubaneswar, Odisha, 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
6
|
Hou Z, Leng J, Yu J, Xia Z, Wu LY. PathExpSurv: pathway expansion for explainable survival analysis and disease gene discovery. BMC Bioinformatics 2023; 24:434. [PMID: 37968615 PMCID: PMC10648621 DOI: 10.1186/s12859-023-05535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND In the field of biology and medicine, the interpretability and accuracy are both important when designing predictive models. The interpretability of many machine learning models such as neural networks is still a challenge. Recently, many researchers utilized prior information such as biological pathways to develop neural networks-based methods, so as to provide some insights and interpretability for the models. However, the prior biological knowledge may be incomplete and there still exists some unknown information to be explored. RESULTS We proposed a novel method, named PathExpSurv, to gain an insight into the black-box model of neural network for cancer survival analysis. We demonstrated that PathExpSurv could not only incorporate the known prior information into the model, but also explore the unknown possible expansion to the existing pathways. We performed downstream analyses based on the expanded pathways and successfully identified some key genes associated with the diseases and original pathways. CONCLUSIONS Our proposed PathExpSurv is a novel, effective and interpretable method for survival analysis. It has great utility and value in medical diagnosis and offers a promising framework for biological research.
Collapse
Affiliation(s)
- Zhichao Hou
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiacheng Leng
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiating Yu
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, USA.
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, USA.
| | - Ling-Yun Wu
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Chen JY, Huang XY, Lin F, You Q, Xue YT, Lin B, Zheng QS, Wei Y, Xue XY, Li XD, Chen DN, Xu N. A tumor-associated macrophages related model for predicting biochemical recurrence and tumor immune environment in prostate cancer. Genomics 2023; 115:110691. [PMID: 37516327 DOI: 10.1016/j.ygeno.2023.110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE To identify tumor-associated macrophages (TAMs) related molecular subtypes and develop a TAMs related prognostic model for prostate cancer (PCa). METHODS Consensus clustering analysis was used to identify TAMs related molecular clusters. A TAMs related prognostic model was developed using univariate and multivariate Cox analysis. RESULTS Three TAMs related molecular clusters were identified and were confirmed to be associated with prognosis, clinicopathological characteristics, PD-L1 expression levels and tumor microenvironment. A TAMs related prognostic model was constructed. Patients in low-risk group all showed a more appreciable biochemical recurrence-free survival (BCRFS) than patients in high-risk group in train cohort, test cohort, entire TCGA cohort and validation cohort. SLC26A3 attenuated progression of PCa and prevented macrophage polarizing to TAMs phenotype, which was initially verified. CONCLUSIONS We successfully identified molecular clusters related to TAMs. Additionally, we developed a prognostic model involving TAMs that exhibits excellent predictive performance for biochemical recurrence-free survival in PCa.
Collapse
Affiliation(s)
- Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xu-Yun Huang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yu-Ting Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiao-Dong Li
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
8
|
Crippa V, Malighetti F, Villa M, Graudenzi A, Piazza R, Mologni L, Ramazzotti D. Characterization of cancer subtypes associated with clinical outcomes by multi-omics integrative clustering. Comput Biol Med 2023; 162:107064. [PMID: 37267828 DOI: 10.1016/j.compbiomed.2023.107064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Cancer patients show heterogeneous phenotypes and very different outcomes and responses even to common treatments, such as standard chemotherapy. This state-of-affairs has motivated the need for the comprehensive characterization of cancer phenotypes and fueled the generation of large omics datasets, comprising multiple omics data reported for the same patients, which might now allow us to start deciphering cancer heterogeneity and implement personalized therapeutic strategies. In this work, we performed the analysis of four cancer types obtained from the latest efforts by The Cancer Genome Atlas, for which seven distinct omics data were available for each patient, in addition to curated clinical outcomes. We performed a uniform pipeline for raw data preprocessing and adopted the Cancer Integration via MultIkernel LeaRning (CIMLR) integrative clustering method to extract cancer subtypes. We then systematically review the discovered clusters for the considered cancer types, highlighting novel associations between the different omics and prognosis.
Collapse
Affiliation(s)
- Valentina Crippa
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
9
|
Khwanraj K, Prommahom A, Dharmasaroja P. eEF1A2 siRNA Suppresses MPP+-Induced Activation of Akt and mTOR and Potentiates Caspase-3 Activation in a Parkinson’s Disease Model. ScientificWorldJournal 2023; 2023:1335201. [PMID: 37051183 PMCID: PMC10085650 DOI: 10.1155/2023/1335201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
The tissue-specific protein eEF1A2 has been linked to the development of neurological disorders. The role of eEF1A2 in the pathogenesis of Parkinson’s disease (PD) has yet to be investigated. The aim of this study was to determine the potential neuroprotective effects of eEF1A2 in an MPP+ model of PD. Differentiated SH-SY5Y cells were transfected with eEF1A2 siRNA, followed by MPP+ exposure. The expression of p-Akt1 and p-mTORC1 was determined using Western blotting. The expression of p53, Bax, Bcl-2, and caspase-3 was evaluated using qRT-PCR. Cleaved caspase-3 levels and Annexin V/propidium iodide flow cytometry were used to determine apoptosis. The effects of PI3K inhibition were examined. The results showed that eEF1A2 siRNA significantly reduced the eEF1A2 expression induced by MPP+. MPP+ treatment activated Akt1 and mTORC1; however, eEF1A2 knockdown suppressed this activation. In eEF1A2-knockdown cells, MPP+ treatment increased the expression of p53 and caspase-3 mRNA levels as well as increased apoptotic cell death when compared to MPP+ treatment alone. In cells exposed to MPP+, upstream inhibition of the Akt/mTOR pathway, by either LY294002 or wortmannin, inhibited the phosphorylation of Akt1 and mTORC1. Both PI3K inhibitors increased eEF1A2 expression in cells, whether or not they were also treated with MPP+. In conclusion, eEF1A2 may function as a neuroprotective factor against MPP+, in part by regulating the Akt/mTOR pathway upstream.
Collapse
Affiliation(s)
- Kawinthra Khwanraj
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Athinan Prommahom
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | | |
Collapse
|
10
|
Huang C, Zhao Q, Zhou X, Huang R, Duan Y, Haybaeck J, Yang Z. The progress of protein synthesis factors eIFs, eEFs and eRFs in inflammatory bowel disease and colorectal cancer pathogenesis. Front Oncol 2022; 12:898966. [DOI: 10.3389/fonc.2022.898966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal diseases are threatening human health, especially inflammatory bowel disease (IBD) and colorectal cancer (CRC). IBD is a group of chronic, recurrent and incurable disease, which may affect the entire gastrointestinal tract, increasing the risk of CRC. Eukaryotic gene expression is a complicated process, which is mainly regulated at the level of gene transcription and mRNA translation. Protein translation in tissue is associated with a sequence of steps, including initiation, elongation, termination and recycling. Abnormal regulation of gene expression is the key to the pathogenesis of CRC. In the early stages of cancer, it is vital to identify new diagnostic and therapeutic targets and biomarkers. This review presented current knowledge on aberrant expression of eIFs, eEFs and eRFs in colorectal diseases. The current findings of protein synthesis on colorectal pathogenesis showed that eIFs, eEFs and eRFs may be potential targets for CRC treatment.
Collapse
|
11
|
Bosutti A, Dapas B, Grassi G, Bussani R, Zanconati F, Giudici F, Bottin C, Pavan N, Trombetta C, Scaggiante B. High eEF1A1 Protein Levels Mark Aggressive Prostate Cancers and the In Vitro Targeting of eEF1A1 Reveals the eEF1A1-actin Complex as a New Potential Target for Therapy. Int J Mol Sci 2022; 23:ijms23084143. [PMID: 35456960 PMCID: PMC9027132 DOI: 10.3390/ijms23084143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Although the eukaryotic elongation factor eEF1A1 plays a role in various tumours, there is little information on its prognosis/therapeutic value in prostate carcinoma. In high-grade and castration-resistant prostate carcinoma (CRPC), the identification of novel therapeutic markers/targets remains a priority. The expression of eEF1A1 protein was determined in formalin-fixed, paraffin-embedded prostate cancer and hyperplasia tissue by IHC. The role of eEF1A1 was investigated in a cellular model using a DNA aptamer (GT75) we previously developed. We used the aggressive CRPC cancer PC-3 and non-tumourigenic PZHPV-7 lines. Cytotoxicity was measured by the MTS assay and eEF1A1 protein levels by in-cell Western assays. The mRNA levels of eEF1A1 were measured by qPCR and ddPCR. Higher expression of eEF1A1 was found in Gleason 7-8 compared with 4-6 tissues (Gleason ≥ 7, 87% versus Gleason ≤ 6, 54%; p = 0.033). Patients with a high expression of eEF1A1 had a worse clinical outcome. In PC-3, but not in PZHPV-7, GT75 decreased cell viability and increased autophagy and cell detachment. In PC-3 cells, but not in PZHPV-7, GT75 mainly co-localised with the fraction of eEF1A1 bound to actin. Overexpression of the eEF1A1 protein can identify aggressive forms of prostate cancer. The targeting of eEF1A1 by GT75 impaired cell viability in PC-3 cancer cells but not in PZHPV-7 non-tumourigenic cells, indicating a specific role for the protein in cancer survival. The eEF1A1-actin complexes appear to be critical for the viability of PC-3 cancer cells, suggesting that eEF1A1 may be an attractive target for therapeutic strategies in advanced forms of prostate cancer.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
- Correspondence: (G.G.); (B.S.); Tel.: +39-040-558-3686 (B.S.)
| | - Rossana Bussani
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Fabiola Giudici
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Nicola Pavan
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Carlo Trombetta
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
- Correspondence: (G.G.); (B.S.); Tel.: +39-040-558-3686 (B.S.)
| |
Collapse
|
12
|
Lei S, Zhang Y. Integrative analysis identifies key genes related to metastasis and a robust gene-based prognostic signature in uveal melanoma. BMC Med Genomics 2022; 15:61. [PMID: 35300699 PMCID: PMC8932077 DOI: 10.1186/s12920-022-01211-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Uveal melanoma (UM) is an aggressive intraocular malignancy, leading to systemic metastasis in half of the patients. However, the mechanism of the high metastatic rate remains unclear. This study aimed to identify key genes related to metastasis and construct a gene-based signature for better prognosis prediction of UM patients. METHODS Weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression of genes primarily associated with metastasis of UM. Univariate, Lasso-penalized and multivariate Cox regression analyses were performed to establish a prognostic signature for UM patients. RESULTS The tan and greenyellow modules were significantly associated with the metastasis of UM patients. Significant genes related to the overall survival (OS) in these two modules were then identified. Additionally, an OS-predicting signature was established. The UM patients were divided into a low- or high-risk group. The Kaplan-Meier curve indicated that high-risk patients had poorer OS than low-risk patients. The receiver operating curve (ROC) was used to validate the stability and accuracy of the final five-gene signature. Based on the signature and clinical traits of UM patients, a nomogram was established to serve in clinical practice. CONCLUSIONS We identified key genes involved in the metastasis of UM. A robust five-gene-based prognostic signature was constructed and validated. In addition, the gene signature-based nomogram was created that can optimize the prognosis prediction and identify possible factors causing the poor prognosis of high-risk UM patients.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yi Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China.
| |
Collapse
|
13
|
Türkez H, Arslan ME, Sönmez E, Tatar A, Geyikoğlu F, Açikyildiz M, Mardinoğlu A. Safety Assessments of Nickel Boride Nanoparticles on the Human Pulmonary Alveolar Cells by Using Cell Viability and Gene Expression Analyses. Biol Trace Elem Res 2021; 199:2602-2611. [PMID: 32909113 DOI: 10.1007/s12011-020-02374-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Nickel boride is generally used in the steel industry as a melting accelerator due to its feature of creating a protective and stable attribute at high temperatures. It is also used to improve the hardenability of the steel with boron addition in the production. Thus, safety studies and biocompatibility analysis of nickel boride should be performed comprehensively to understand the limitations of use in various areas. In the present study, nickel boride nanoparticles (Ni2B NPs) were synthesized by a single-step method and molecule characterizations were performed via the use of X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analyses. Cytotoxicity properties of Ni2B NPs were identified on human pulmonary alveolar epithelial cells (HPAEpiC) by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR), and lactate dehydrogenase (LDH) assays. Illumina human ht-12 v4.0 whole-genome microarray analysis was conducted to investigate NiB2 NPs effects on gene expression regulations of HPAEpiC cells. The database for annotation, visualization, and integrated discovery (DAVID) analysis was performed to reveal the relationship between Ni2B NP application and cellular pathway alterations. According to cytotoxicity analysis, the IC50 value for Ni2B NP application was found as 81.99 mg/L concentration. Microarray analysis of Ni2B NP application was shown for the first time that 693 gene expression changes (FC ≥ 2) occurred significantly over 40.000 gene probes and Ni2B NPs were observed to affect microtubule regulation, centrosome organization, and phosphoprotein synthesis.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Erdal Sönmez
- Advanced Materials Research Laboratory, Department of Nanoscience & Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Medical Faculty, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoğlu
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, Erzurum, Turkey
| | - Metin Açikyildiz
- Department of Chemistry, Faculty of Science and Art, Kilis 7 Aralık University, Kilis, Turkey
| | - Adil Mardinoğlu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
14
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Bourdi M, Rudloff U, Patnaik S, Marugan J, Terse PS. Safety assessment of metarrestin in dogs: A clinical candidate targeting a subnuclear structure unique to metastatic cancer cells. Regul Toxicol Pharmacol 2020; 116:104716. [PMID: 32619635 PMCID: PMC8378239 DOI: 10.1016/j.yrtph.2020.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/09/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer is a leading cause of cancer-related deaths in the U.S. Ninety percent of patients with stage IV pancreatic cancer die within one year of diagnosis due to complications of metastasis. A metastatic potential of cancer cells has been shown to be closely associated with formation of perinucleolar compartment (PNC). Metarrestin, a first-in-class PNC inhibitor, was evaluated for its toxicity, toxicokinetics, and safety pharmacology in beagle dogs following every other day oral (capsule) administration for 28 days to support its introduction into clinical trials. The study consisted of four dose groups: vehicle; 0.25, 0.75 and 1.50 mg/kg/dose. Metarrestin reached its maximum concentration in blood at 3 h (overall median Tmax) across all doses with a mean t1/2 over 168 h of 55.5 h. Dose dependent increase in systemic exposure (Cmax and AUClast) with no sex difference was observed on days 1 and 27. Metarrestin accumulated from Day 1 to Day 27 at all dose levels and in both sexes by an overall factor of about 2.34. No mortality occurred during the dosing period; however, treatment-related clinical signs of toxicity consisting of hypoactivity, shaking/shivering, thinness, irritability, salivation, abnormal gait, tremors, ataxia and intermittent seizure-like activity were seen in both sexes at mid and high dose groups. Treatment-related effects on body weight and food consumption were seen at the mid and high dose levels. Safety pharmacology study showed no treatment-related effects on blood pressure, heart rate, corrected QT, PR, RR, or QRS intervals, or respiratory function parameters (respiratory rate, tidal volume, minute volume). There were no histopathological changes observed, with the exception of transient thymic atrophy which was considered to be non-adverse. Based primarily on clinical signs of toxicity, the No Observed Adverse Effect Level (NOAEL) in dogs was considered to be 0.25 mg/kg metarrestin after every other day dosing for 28 days with a mean of male and female Cmax = 82.5 ng/mL and AUClast = 2521 h*ng/mL, on Day 27.
Collapse
Affiliation(s)
- Mohammed Bourdi
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Juan Marugan
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Pramod S Terse
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA.
| |
Collapse
|
16
|
Hornung T, O’Neill HA, Logie SC, Fowler KM, Duncan JE, Rosenow M, Bondre AS, Tinder T, Maher V, Zarkovic J, Zhong Z, Richards MN, Wei X, Miglarese MR, Mayer G, Famulok M, Spetzler D. ADAPT identifies an ESCRT complex composition that discriminates VCaP from LNCaP prostate cancer cell exosomes. Nucleic Acids Res 2020; 48:4013-4027. [PMID: 31989173 PMCID: PMC7192620 DOI: 10.1093/nar/gkaa034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Libraries of single-stranded oligodeoxynucleotides (ssODNs) can be enriched for sequences that specifically bind molecules on naïve complex biological samples like cells or tissues. Depending on the enrichment strategy, the ssODNs can identify molecules specifically associated with a defined biological condition, for example a pathological phenotype, and thus are potentially useful for biomarker discovery. We performed ADAPT, a variant of SELEX, on exosomes secreted by VCaP prostate cancer cells. A library of ∼1011 ssODNs was enriched for those that bind to VCaP exosomes and discriminate them from exosomes derived from LNCaP prostate cancer cells. Next-generation sequencing (NGS) identified the best discriminating ssODNs, nine of which were resynthesized and their discriminatory ability confirmed by qPCR. Affinity purification with one of the sequences (Sequence 7) combined with LC–MS/MS identified its molecular target complex, whereof most proteins are part of or associated with the multiprotein ESCRT complex participating in exosome biogenesis. Within this complex, YBX1 was identified as the directly-bound target protein. ADAPT thus is able to differentiate exosomes from cancer cell subtypes from the same lineage. The composition of ESCRT complexes in exosomes from VCaP versus LNCaP cells might constitute a discriminatory element between these prostate cancer subtypes.
Collapse
Affiliation(s)
- Tassilo Hornung
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
| | | | - Stephen C Logie
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
| | | | - Janet E Duncan
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
| | - Matthew Rosenow
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
| | - Aniket S Bondre
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
| | - Teresa Tinder
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
| | - Varun Maher
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
| | - Jelena Zarkovic
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
| | - Zenyu Zhong
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
| | | | - Xixi Wei
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
| | - Mark R Miglarese
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
- Correspondence may also be addressed to Mark R. Miglarese.
| | - Günter Mayer
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
- Center of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
- Correspondence may also be addressed to Günter Mayer.
| | - Michael Famulok
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
- Center of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
- Max-Planck-Fellow Chemical Biology, Center of Advanced European Studies and Research (CAESAR), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- To whom correspondence should be addressed. Tel: +49 228 731787; Fax: +49 228 735388;
| | - David Spetzler
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040, USA
- Correspondence may also be addressed to David Spetzler. Tel: +1 602 464 7527;
| |
Collapse
|
17
|
Waldbillig F, Nitschke K, Abdelhadi A, von Hardenberg J, Nuhn P, Nientiedt M, Weis CA, Michel MS, Erben P, Worst TS. Phosphodiesterase SMPDL3B Gene Expression as Independent Outcome Prediction Marker in Localized Prostate Cancer. Int J Mol Sci 2020; 21:ijms21124373. [PMID: 32575490 PMCID: PMC7352472 DOI: 10.3390/ijms21124373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Current outcome prediction markers for localized prostate cancer (PCa) are insufficient. The impact of the lipid-modifying Sphingomyelin Phosphodiesterase Acid Like 3B (SMPDL3B) in PCa is unknown. Two cohorts of patients with PCa who underwent radical prostatectomy (n = 40, n = 56) and benign prostate hyperplasia (BPH) controls (n = 8, n = 11) were profiled for SMPDL3B expression with qRT-PCR. Publicly available PCa cohorts (Memorial Sloane Kettering Cancer Centre (MSKCC; n = 131, n = 29 controls) and The Cancer Genome Atlas (TCGA; n = 497, n = 53 controls)) served for validation. SMPDL3B's impact on proliferation and migration was analyzed in PC3 cells by siRNA knockdown. In both cohorts, a Gleason score and T stage independent significant overexpression of SMPDL3B was seen in PCa compared to BPH (p < 0.001 each). A lower expression of SMPDL3B was associated with a shorter overall survival (OS) (p = 0.005) in long term follow-up. A SMPDL3B overexpression in PCa tissue was confirmed in the validation cohorts (p < 0.001 each). In the TCGA patients with low SMPDL3B expression, biochemical recurrence-free survival (p = 0.011) and progression-free interval (p < 0.001) were shorter. Knockdown of SMPDL3B impaired PC3 cell migration but not proliferation (p = 0.0081). In summary, SMPLD3B is highly overexpressed in PCa tissue, is inversely associated with localized PCa prognosis, and impairs PCa cell migration.
Collapse
Affiliation(s)
- Frank Waldbillig
- Department of Urology and Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (K.N.); (A.A.); (J.v.H.); (P.N.); (M.N.); (M.S.M.); (P.E.); (T.S.W.)
- Correspondence: ; Tel.: +49-621-383-2201
| | - Katja Nitschke
- Department of Urology and Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (K.N.); (A.A.); (J.v.H.); (P.N.); (M.N.); (M.S.M.); (P.E.); (T.S.W.)
| | - Abdallah Abdelhadi
- Department of Urology and Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (K.N.); (A.A.); (J.v.H.); (P.N.); (M.N.); (M.S.M.); (P.E.); (T.S.W.)
| | - Jost von Hardenberg
- Department of Urology and Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (K.N.); (A.A.); (J.v.H.); (P.N.); (M.N.); (M.S.M.); (P.E.); (T.S.W.)
| | - Philipp Nuhn
- Department of Urology and Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (K.N.); (A.A.); (J.v.H.); (P.N.); (M.N.); (M.S.M.); (P.E.); (T.S.W.)
| | - Malin Nientiedt
- Department of Urology and Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (K.N.); (A.A.); (J.v.H.); (P.N.); (M.N.); (M.S.M.); (P.E.); (T.S.W.)
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
| | - Maurice Stephan Michel
- Department of Urology and Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (K.N.); (A.A.); (J.v.H.); (P.N.); (M.N.); (M.S.M.); (P.E.); (T.S.W.)
| | - Philipp Erben
- Department of Urology and Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (K.N.); (A.A.); (J.v.H.); (P.N.); (M.N.); (M.S.M.); (P.E.); (T.S.W.)
| | - Thomas Stefan Worst
- Department of Urology and Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (K.N.); (A.A.); (J.v.H.); (P.N.); (M.N.); (M.S.M.); (P.E.); (T.S.W.)
| |
Collapse
|
18
|
Expression pattern of EEF1A2 in brain tumors: Histological analysis and functional role as a promoter of EMT. Life Sci 2020; 246:117399. [PMID: 32032648 DOI: 10.1016/j.lfs.2020.117399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022]
Abstract
AIMS Glioblastomas are highly aggressive brain tumors with a very poor survival rate. EEF1A2, the proto-oncogenic isoform of the EEF1A translation factor family, has been found to be overexpressed and promoting tumorigenesis in multiple cancers. Interestingly, recent studies reported reduced expression of this protein in brain tumors, drawing our attention to find the functional role and mechanism of this protein in brain tumor progression. MAIN METHODS Using representative cell line as models, the role of EEF1A2 in cell proliferation, migration and invasion were assessed using MTS assay, scratch wound-healing assay, transwell migration and invasion assay, respectively. Activation of key signaling pathways was assessed using western blots and real-time PCR. Finally, using immunohistochemistry we checked the protein levels of EEF1A2 in CNS tumors. KEY FINDINGS EEF1A2 was found to increase the proliferative, migratory and invasive properties of cell lines of both glial and neuronal origin. PI3K activation directly correlated with EEF1A2 levels. Protein levels of key EMT markers viz. Twist, Snail, and Slug were increased upon ectopic EEF1A2 expression. Furthermore, EEF1A2 was found to affect the expression levels of key inflammatory cytokines, growth factors and matrix metalloproteases. IHC analysis showed that EEF1A2 is upregulated in tumor tissues compared to normal tissue. SIGNIFICANCE EEF1A2 acts as an oncogene in both neuronal and glial cells and triggers an EMT program via PI3K pathway. However, it shows enhanced expression in neuronal cells of the brain than the glial cells, which could explain the previously reported anomaly.
Collapse
|
19
|
Shen Z, Li Y, Fang Y, Lin M, Feng X, Li Z, Zhan Y, Liu Y, Mou T, Lan X, Wang Y, Li G, Wang J, Deng H. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol Oncol 2020; 14:387-406. [PMID: 31876369 PMCID: PMC6998659 DOI: 10.1002/1878-0261.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023] Open
Abstract
Sorting nexin 16 (SNX16), a member of the sorting nexin family, has been implicated in tumor development. However, the function of SNX16 has not yet been investigated in colorectal cancer (CRC). Here, we showed that SNX16 expression was significantly upregulated in CRC tissues compared with normal counterparts. Upregulated mRNA levels of SNX16 predicted poor survival of CRC patients. Functional experiments showed that SNX16 could promote CRC cells growth both in vitro and in vivo. Knockdown of SNX16 induced cell cycle arrest and apoptosis, whereas ectopic overexpression of SNX16 had the opposite effects. Mechanistically, SNX16‐eukaryotic translation elongation factor 1A2 (eEF1A2) interaction could inhibit the degradation and ubiquitination of eEF1A2, followed by activation of downstream c‐Myc signaling. Our study unveiled that the SNX16/eEF1A2/c‐Myc signaling axis could promote colorectal tumorigenesis and SNX16 might potentially serve as a novel biomarker for the diagnosis and an intervention of CRC.
Collapse
Affiliation(s)
- Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingdao Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaochuang Feng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhi Zhan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliang Lan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanan Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiping Wang
- Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Bosutti A, Kalaja O, Zanconati F, Dapas B, Grassi G, Passamonti S, Scaggiante B. A rapid and specific method to simultaneously quantify eukaryotic elongation factor 1A1 and A2 protein levels in cancer cells. J Pharm Biomed Anal 2019; 176:112814. [PMID: 31450069 DOI: 10.1016/j.jpba.2019.112814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The two isoforms of the eukaryotic Elongation Factor 1A (eEF1A1 and eEF1A2), sustain the progression/aggressiveness of cancer cells. Thus, they are considered promising therapeutic targets and prognostic markers. It follows that their precise quantification is of utmost relevance in research and development. The simultaneous quantification of A1 and A2 proteins in the cells helps the comprehension of cancer biology mechanisms and response to drug treatments. However, the high homology at the amino-acidic level (92%) can cause antibodies cross-reaction. Moreover, the commonly employed western blotting just gives semi-quantitative data and does not allow the detection of both protein targets within the same cell. Thus, we developed an in cell western (ICW) technique to bypass the above limitations. METHODS Firstly, relevant antibodies cross-reaction was excluded by immunohistochemistry on normal pancreatic tissue; then eEF1A1-A2 protein levels were quantitated by ICW in prostate and colorectal cancer cell lines in 96 well plates under different conditions, which include: 1) drug treatment, 2) siRNA silencing, 3) cell seeding density. RESULTS We show that: 1) eEF1A1-A2 levels vary depending on the cell type following drug treatment, 2) ICW can accurately detect eEF1A1-A2 protein levels following siRNA silencing, 3) cell seeding density influences eEF1A1-A2 levels, depending on cell type. CONCLUSIONS ICW is a valuable tool to specifically determine the intracellular level of eEF1A1-A2 proteins thus contributing to better define their role as potential therapeutic targets and prognostic markers in human tumors as well as for drug effects screening.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Odeta Kalaja
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy.
| |
Collapse
|
21
|
Giudici F, Petracci E, Nanni O, Bottin C, Pinamonti M, Zanconati F, Scaggiante B. Elevated levels of eEF1A2 protein expression in triple negative breast cancer relate with poor prognosis. PLoS One 2019; 14:e0218030. [PMID: 31220107 PMCID: PMC6586289 DOI: 10.1371/journal.pone.0218030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic elongation factor 1 alpha 2 (eEF1A2) is a translation factor selectively expressed by heart, skeletal muscle, nervous system and some specialized cells. Its ectopic expression relates with tumorigenesis in several types of human cancer. No data are available about the role of eEF1A2 in Triple Negative Breast Cancers (TNBC). This study investigated the relation between eEF1A2 protein levels and the prognosis of TNBC. A total of 84 TNBC diagnosed in the period 2002-2011 were included in the study. eEF1A2 protein level was measured in formalin-fixed paraffin-embedded tissues by immunohistochemistry in a semi-quantitative manner (sum of the percentage of positive cells x staining intensity) on a scale from 0 to 300. Cox regression assessed the association between eEF1A2 levels and disease-free survival (DFS) and breast cancer-specific survival (BCSS). Elevated values of eEF1A2 were associated with older age at diagnosis (p = 0.003), and androgen receptors positivity (p = 0.002). At univariate Cox analysis, eEF1A2 levels were not significantly associated with DFS and BCSS (p = 0.11 and p = 0.08, respectively) whereas adjusting for stage of disease, elevated levels of eEF1A2 protein resulted associated with poor prognosis (HR = 1.05, 95% CI: 1.01-1.11, p = 0.04 and HR = 1.07, 95% CI: 1.01-1.14, p = 0.03 for DFS and BCSS, respectively). This trend was confirmed analyzing negative versus positive samples by using categorized scores. Our data showed a negative prognostic role of eEF1A2 protein in TNBC, sustaining further investigations to confirm this result by wider and independent cohorts of patients.
Collapse
Affiliation(s)
- Fabiola Giudici
- Biostatistics Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Oriana Nanni
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Maurizio Pinamonti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|