1
|
Jayab NA, Abed A, Talaat IM, Hamoudi R. The molecular mechanism of NF-κB dysregulation across different subtypes of renal cell carcinoma. J Adv Res 2024:S2090-1232(24)00314-X. [PMID: 39094893 DOI: 10.1016/j.jare.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The nuclear factor kappa B (NF-κB) is a critical pathway that regulates various cellular functions, including immune response, proliferation, growth, and apoptosis. Furthermore, this pathway is tightly regulated to ensure stability in the presence of immunogenic triggers or genotoxic stimuli. The lack of control of the NF-κB pathway can lead to the initiation of different diseases, mainly autoimmune diseases and cancer, including Renal cell carcinoma (RCC). RCC is the most common type of kidney cancer and is characterized by complex genetic composition and elusive molecular mechanisms. AIM OF REVIEW The current review summarizes the mechanism of NF-κB dysregulation in different subtypes of RCC and its impact on pathogenesis. KEY SCIENTIFIC CONCEPT OF REVIEW This review highlights the prominent role of NF-κB in RCC development and progression by driving the expression of multiple genes and interplaying with different pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In silico analysis of RCC cohorts and molecular studies have revealed that multiple NF-κB members and target genes are dysregulated. The dysregulation includes receptors such as TLR2, signal-transmitting members including RelA, and target genes, for instance, HIF-1α. The lack of effective regulatory mechanisms results in a constitutively active NF-κB pathway, which promotes cancer growth, migration, and survival. In this review, we comprehensively summarize the role of dysregulated NF-κB-related genes in the most common subtypes of RCC, including clear cell RCC (ccRCC), chromophobe RCC (chRCC), and papillary RCC (PRCC).
Collapse
Affiliation(s)
- Nour Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Alaa Abed
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, 21131 Alexandria, Egypt.
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, 27272 Sharjah, United Arab Emirates; Division of Surgery and Interventional Science, University College London, London, United Kingdom; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Pociupany M, Snoeck R, Dierickx D, Andrei G. Treatment of Epstein-Barr Virus infection in immunocompromised patients. Biochem Pharmacol 2024; 225:116270. [PMID: 38734316 DOI: 10.1016/j.bcp.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Epstein-Barr Virus (EBV), is a ubiquitous γ-Herpesvirus that infects over 95% of the human population and can establish a life-long infection without causing any clinical symptoms in healthy individuals by residing in memory B-cells. Primary infection occurs in childhood and is mostly asymptomatic, however in some young adults it can result in infectious mononucleosis (IM). In immunocompromised individuals however, EBV infection has been associated with many different malignancies. Since EBV can infect both epithelial and B-cells and very rarely NK cells and T-cells, it is associated with both epithelial cancers like nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC), with lymphomas including Burkitt Lymphoma (BL) or Post-transplant Lymphoproliferative Disorder (PTLD) and rarely with NK/T-cell lymphomas. Currently there are no approved antivirals active in PTLD nor in any other malignancy. Moreover, lytic phase disease almost never requires antiviral treatment. Although many novel therapies against EBV have been described, the management and/or prevention of EBV primary infections or reactivations remains difficult. In this review, we discuss EBV infection, therapies targeting EBV in both lytic and latent state with novel therapeutics developed that show anti-EBV activity as well as EBV-associated malignancies both, epithelial and lymphoproliferative malignancies and emerging therapies targeting the EBV-infected cells.
Collapse
Affiliation(s)
- Martyna Pociupany
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Daan Dierickx
- Laboratory of Experimental Hematology, Department of Oncology, KU Leuven, Leuven, Belgium; Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Wu K, Li Y, Ma K, Zhao W, Yao Z, Zheng Z, Sun F, Mu X, Liu Z, Zheng J. The microbiota and renal cell carcinoma. Cell Oncol (Dordr) 2024; 47:397-413. [PMID: 37878209 DOI: 10.1007/s13402-023-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/26/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for about 2% of cancer diagnoses and deaths worldwide. Recent studies emphasized the critical involvement of microbial populations in RCC from oncogenesis, tumor growth, and response to anticancer therapy. Microorganisms have been shown to be involved in various renal physiological and pathological processes by influencing the immune system function, metabolism of the host and pharmaceutical reactions. These findings have extended our understanding and provided more possibilities for the diagnostic or therapeutic development of microbiota, which could function as screening, prognostic, and predictive biomarkers, or be manipulated to prevent RCC progression, boost anticancer drug efficacy and lessen the side effects of therapy. This review aims to present an overview of the roles of microbiota in RCC, including pertinent mechanisms in microbiota-related carcinogenesis, the potential use of the microbiota as RCC biomarkers, and the possibility of modifying the microbiota for RCC prevention or treatment. According to these scientific findings, the clinical translation of microbiota is expected to improve the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Ke Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaorong Li
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangli Ma
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixian Yao
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Zheng
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junhua Zheng
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Li Y, Yang Y. Label-free quantitative proteomics reveals the mechanisms of Aurora kinase B in renal cell carcinoma. SAGE Open Med 2024; 12:20503121241228474. [PMID: 38516642 PMCID: PMC10956137 DOI: 10.1177/20503121241228474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/05/2024] [Indexed: 03/23/2024] Open
Abstract
Background Renal cell carcinoma is the most common form of kidney cancer which is a global threat to human health, needing to explore effective therapeutic targets and treatment methods. Aurora kinase B acts as an important carcinogenic role in various kinds of tumors, while its mechanism in renal cell carcinoma is indistinct. Herein we explore the underlying mechanism of Aurora kinase B in renal cell carcinoma. Methods and results Label-free quantitative proteomics analysis was employed to analyze the differentially expressed proteins in 786-O cells which were treated with si-Aurora kinase B or si-ctrl. In the current study, 169 differentially expressed proteins were identified. The top 10 upregulated proteins were MX2, IFI44L, ISG20, DDX58, F3, IFI44, ECE1, PRIC285, NIT1, and IFIT2. The top 10 downregulated proteins were FKBP9, FSTL1, DDAH1, TGFB2, HMGN3, COIL, FAM65A, PTPN14, ARFGAP2, and EIF2C2. GO enrichment analysis showed that these differentially expressed proteins participated in biological processes, including defense response to virus, response to virus, and type I interferon signaling pathway. These differentially expressed proteins participated in cellular components, including focal adhesion, cell-substrate adherens junction, cell-substrate junction, and endoplasmic reticulum lumen. These differentially expressed proteins participated in molecule functions, including guanyl nucleotide binding, nucleotidase activity, double-stranded RNA binding, 2'-5'-oligoadenylate synthetase activity, and virus receptor activity. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the significantly changed proteins including OAS3, OAS2, JAK1, TAP1, and RAC1 were involved in Epstein-Barr virus infection. Conclusions Taken together, our results demonstrate the possible mechanisms that Aurora kinase B may participate in renal cell carcinoma. These findings may provide insights into tumorigenesis and a theoretical basis for developing potential therapies of renal cell carcinoma.
Collapse
Affiliation(s)
- Yulong Li
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yang Yang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
5
|
Abuei H, Namdari S, Pakdel T, Pakdel F, Andishe-Tadbir A, Behzad-Behbahani A, Ashraf MJ, Alavi P, Farhadi A. Human parvovirus B19 infection in malignant and benign tissue specimens of different head and neck anatomical subsites. Infect Agent Cancer 2023; 18:51. [PMID: 37710342 PMCID: PMC10503082 DOI: 10.1186/s13027-023-00528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The role of human parvovirus B19 (B19V) infection in malignant and benign lesions such as head and neck squamous cell carcinomas (HNSCCs) and oral mucocele lesions has not been established. Herein, we examined, for the first time, the presence of B19V in HNSCCs from Iranian subjects. METHODS One hundred and eight HNSCC specimens were analyzed for the presence of B19V using nested polymerase chain reaction (nPCR) and TaqMan quantitative PCR assays. Immunohistochemistry procedures were performed to evaluate the expression of B19V VP1/VP2 proteins, p16INK4a, and NF-κB in tumor tissues and their adjacent non-tumor tissues. In addition, 40 oral mucocele, 30 oral buccal mucosa swabs, and 30 nasopharyngeal swabs obtained from healthy adults were analyzed as controls. RESULTS B19V DNA was detected in 36.1% of HNSCCs. Further, 23.3% of HNSCC specimens showed immunoreactivity against B19V VP1/VP2 proteins. There was a significant difference in the frequency of B19V DNA-positive cases between the patient and control groups (p < 0.0001). Moreover, comparing tumoral tissues and their adjacent non-tumor tissues in terms of immunoreactivity against B19V structural proteins, a significant association was found between tumor tissues and B19V infection (p < 0.0001). Finally, investigating the simultaneous presence of B19V and high-risk human papillomaviruses (HPV) DNA, we found a significant association between these two viral infections in HNSCCs (p = 0.031). CONCLUSIONS To sum up, B19V was frequently present in HNSCC tissues of Iranian patients but mostly absent in the adjacent non-tumor tissues as well as oral mucocele lesions, buccal, and nasopharyngeal swabs of healthy subjects. HPV possibly contributes to B19V persistence in HNSCC tissues. Additional research is required to investigate potential etiological or cofactor roles of B19V in the development of HNSCCs.
Collapse
Affiliation(s)
- Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepide Namdari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Pakdel
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Pakdel
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Andishe-Tadbir
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad J Ashraf
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parnian Alavi
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Shechter O, Sausen DG, Gallo ES, Dahari H, Borenstein R. Epstein-Barr Virus (EBV) Epithelial Associated Malignancies: Exploring Pathologies and Current Treatments. Int J Mol Sci 2022; 23:14389. [PMID: 36430864 PMCID: PMC9699474 DOI: 10.3390/ijms232214389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Epstein-Barr virus (EBV) is one of eight known herpesviruses with the potential to infect humans. Globally, it is estimated that between 90-95% of the population has been infected with EBV. EBV is an oncogenic virus that has been strongly linked to various epithelial malignancies such as nasopharyngeal and gastric cancer. Recent evidence suggests a link between EBV and breast cancer. Additionally, there are other, rarer cancers with weaker evidence linking them to EBV. In this review, we discuss the currently known epithelial malignancies associated with EBV. Additionally, we discuss and establish which treatments and therapies are most recommended for each cancer associated with EBV.
Collapse
Affiliation(s)
- Oren Shechter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Elisa S. Gallo
- Tel-Aviv Sourasky Medical Center, Division of Dermatology, Tel-Aviv 6423906, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
7
|
Namdari S, Chong PP, Behzad-Behbahani A, Geramizadeh B, Nazhvani AD, Sekawi Z, Farhadi A. Human herpesvirus 6A and 6B and polyomavirus JC and BK infections in renal cell carcinoma and their relationship with p53, p16INK4a, Ki-67, and nuclear factor-kappa B expression. Microbiol Immunol 2022; 66:510-518. [PMID: 36073532 DOI: 10.1111/1348-0421.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
Abstract
There are a limited number of studies regarding the involvement of viruses in the development and pathogenesis of renal cell carcinoma (RCC). In this study, we aimed to discover whether human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) and human polyomavirus JC (JCV) and BK (BKV) are associated with RCC and the expression of p53, p16INK4a, Ki-67 and NF-κB in RCC patients. A total of 122 histologically confirmed RCC tissue specimens and 96 specimens of their corresponding peritumoral tissues were included in this prospective study. Nested polymerase chain reaction (nPCR) was performed in order to amplify viral DNA sequences. Restriction endonuclease analysis was carried out to discriminate between HHV-6A and HHV-6B. p53, p16INK4a, Ki-67, and NF-κB immunostaining data of the studied tissue specimens were available from our previous study. Statistical analysis was performed to demonstrate the potential associations. HHV-6B and JCV were detected in 10.7% and 13.9% of RCC patients, respectively. We did not detect HHV-6A and BKV in any of RCC tissue specimens. Moreover, no association was found between either of these viruses and RCC. Our study revealed a significant association between HHV-6B and p53 overexpression. No other associations were found between cellular biomarkers p53, p16INK4a, Ki-67, and NF-κB and the studied viruses. The data of the present study, though very limited, disprove the involvement of HHV-6A, HHV-6B, BKV, and JCV in the initiation or progression of RCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sepide Namdari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Department of Pathology, Medical School of Shiraz University, Shiraz University of Medical Sciences, Shiraz, Iran.,Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehghani Nazhvani
- Department of Oral and Maxillofacial Pathology, Biomaterials Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ali Farhadi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Manole B, Damian C, Giusca SE, Caruntu ID, Porumb-Andrese E, Lunca C, Dorneanu OS, Iancu LS, Ursu RG. The Influence of Oncogenic Viruses in Renal Carcinogenesis: Pros and Cons. Pathogens 2022; 11:757. [PMID: 35890003 PMCID: PMC9319782 DOI: 10.3390/pathogens11070757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Viral infections are major contributors to the global cancer burden. Recent advances have revealed that known oncogenic viruses promote carcinogenesis through shared host cell targets and pathways. The aim of this review is to point out the connection between several oncogenic viruses from the Polyomaviridae, Herpesviridae and Flaviviridae families and renal carcinogenesis, highlighting their involvement in the carcinogenic mechanism. We performed a systematic search of the PubMed and EMBASE databases, which was carried out for all the published studies on RCC in the last 10 years, using the following search algorithm: renal cell carcinoma (RCC) and urothelial carcinoma, and oncogenic viruses (BKPyV, EBV, HCV, HPV and Kaposi Sarcoma Virus), RCC and biomarkers, immunohistochemistry (IHC). Our analysis included studies that were published in English from the 1st of January 2012 to the 1st of May 2022 and that described and analyzed the assays used for the detection of oncogenic viruses in RCC and urothelial carcinoma. The virus most frequently associated with RCC was BKPyV. This review of the literature will help to understand the pathogenic mechanism of the main type of renal malignancy and whether the viral etiology can be confirmed, at a minimum, as a co-factor. In consequence, these data can contribute to the development of new therapeutic strategies. A virus-induced tumor could be efficiently prevented by vaccination or treatment with oncolytic viral therapy and/or by targeted therapy.
Collapse
Affiliation(s)
- Bianca Manole
- Department of Morphofunctional Sciences I-Histolgy, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.M.); (S.-E.G.); (I.D.C.)
| | - Costin Damian
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.S.D.); (L.S.I.); (R.G.U.)
| | - Simona-Eliza Giusca
- Department of Morphofunctional Sciences I-Histolgy, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.M.); (S.-E.G.); (I.D.C.)
| | - Irina Draga Caruntu
- Department of Morphofunctional Sciences I-Histolgy, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.M.); (S.-E.G.); (I.D.C.)
| | - Elena Porumb-Andrese
- Department of Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Catalina Lunca
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.S.D.); (L.S.I.); (R.G.U.)
| | - Olivia Simona Dorneanu
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.S.D.); (L.S.I.); (R.G.U.)
| | - Luminita Smaranda Iancu
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.S.D.); (L.S.I.); (R.G.U.)
| | - Ramona Gabriela Ursu
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.S.D.); (L.S.I.); (R.G.U.)
| |
Collapse
|