1
|
De Baets J, De Paepe B, De Mey M. Delaying production with prokaryotic inducible expression systems. Microb Cell Fact 2024; 23:249. [PMID: 39272067 PMCID: PMC11401332 DOI: 10.1186/s12934-024-02523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Engineering bacteria with the purpose of optimizing the production of interesting molecules often leads to a decrease in growth due to metabolic burden or toxicity. By delaying the production in time, these negative effects on the growth can be avoided in a process called a two-stage fermentation. MAIN TEXT During this two-stage fermentation process, the production stage is only activated once sufficient cell mass is obtained. Besides the possibility of using external triggers, such as chemical molecules or changing fermentation parameters to induce the production stage, there is a renewed interest towards autoinducible systems. These systems, such as quorum sensing, do not require the extra interference with the fermentation broth to start the induction. In this review, we discuss the different possibilities of both external and autoinduction methods to obtain a two-stage fermentation. Additionally, an overview is given of the tuning methods that can be applied to optimize the induction process. Finally, future challenges and prospects of (auto)inducible expression systems are discussed. CONCLUSION There are numerous methods to obtain a two-stage fermentation process each with their own advantages and disadvantages. Even though chemically inducible expression systems are well-established, an increasing interest is going towards autoinducible expression systems, such as quorum sensing. Although these newer techniques cannot rely on the decades of characterization and applications as is the case for chemically inducible promoters, their advantages might lead to a shift in future inducible expression systems.
Collapse
Affiliation(s)
- Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Bartolo-Aguilar Y, Chávez-Cabrera C, Flores-Cotera LB, Badillo-Corona JA, Oliver-Salvador C, Marsch R. The potential of cold-shock promoters for the expression of recombinant proteins in microbes and mammalian cells. J Genet Eng Biotechnol 2022; 20:173. [PMID: 36580173 PMCID: PMC9800685 DOI: 10.1186/s43141-022-00455-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low-temperature expression of recombinant proteins may be advantageous to support their proper folding and preserve bioactivity. The generation of expression vectors regulated under cold conditions can improve the expression of some target proteins that are difficult to express in different expression systems. The cspA encodes the major cold-shock protein from Escherichia coli (CspA). The promoter of cspA has been widely used to develop cold shock-inducible expression platforms in E. coli. Moreover, it is often necessary to employ expression systems other than bacteria, particularly when recombinant proteins require complex post-translational modifications. Currently, there are no commercial platforms available for expressing target genes by cold shock in eukaryotic cells. Consequently, genetic elements that respond to cold shock offer the possibility of developing novel cold-inducible expression platforms, particularly suitable for yeasts, and mammalian cells. CONCLUSIONS This review covers the importance of the cellular response to low temperatures and the prospective use of cold-sensitive promoters to direct the expression of recombinant proteins. This concept may contribute to renewing interest in applying white technologies to produce recombinant proteins that are difficult to express.
Collapse
Affiliation(s)
- Yaneth Bartolo-Aguilar
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- Colegio de Estudios Científicos y Tecnológicos del Estado de Michoacán, CECyTE Michoacán, Héroes de la Revolución S/N, Col. Centro, 61880, Churumuco de Morelos, Michoacán, Mexico.
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Jesús Agustín Badillo-Corona
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Carmen Oliver-Salvador
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Rodolfo Marsch
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
3
|
Patel DK, Dave G. pCold-assisted expression of a thermostable xylanase from Bacillus amyloliquefaciens: cloning, expression and characterization. 3 Biotech 2022; 12:245. [PMID: 36033913 PMCID: PMC9411286 DOI: 10.1007/s13205-022-03315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022] Open
Abstract
The biotechnological application of bacterial xylanases requires a high thermostability, a catalytically active state for a broad pH range. The Bacillus amyloliquefaciens (MTCC 1270) xynA gene was amplified and cloned into the pCold vector and was expressed in Escherichia coli to evaluate the expressed proteins' thermostability. The pCold, compared to other similar vectors, has unique properties-including pH and temperature tolerance due to the presence of the cspA promoter. The recombinant xynA-pCold (rxynApC) showed the expression of xynA gene with a molecular weight of ~ 27 kDa, confirmed on SDS-PAGE. The rxynApC exhibits optimal activity at 70 °C and pH 8.0. The residual activity of the recombinant enzyme was 90% at pH 8.0. The thermal decomposition temperature (T d) value for the rxynApC enzyme was 93.33 °C obtained from the thermogravimetric analysis, indicating the potent stability of the cloned enzyme. The specific activity of native xylanase and rxynApC under optimal conditions was 32.35 and 105.5 U/mg, respectively. The structural model of the xynA gene was predicted using the in silico tool along with the active site (containing four important Tyr-166, Gly-7, Try-69 and Arg-112 amino acids). The predicted biophysical parameters of the in silico model were similar to the experimental results. The unique feature of the cspA promoter is that it gave a high expression of rxynApC enzyme having alkali and thermostable properties with high yield in surrogate host E. coli. Thus, the recombinant xynA gene can potentially be applied to different industrial needs by looking at its thermostability and enhanced enzyme activity. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03315-y.
Collapse
Affiliation(s)
- Dharti Keyur Patel
- PD Patel Institute of Applied Sciences, CHARUSAT, Anand, Changa, 388421 Gujarat India
| | - Gayatri Dave
- PD Patel Institute of Applied Sciences, CHARUSAT, Anand, Changa, 388421 Gujarat India
| |
Collapse
|
4
|
Yusof NA, Hashim NHF, Bharudin I. Cold Adaptation Strategies and the Potential of Psychrophilic Enzymes from the Antarctic Yeast, Glaciozyma antarctica PI12. J Fungi (Basel) 2021; 7:jof7070528. [PMID: 34209103 PMCID: PMC8306469 DOI: 10.3390/jof7070528] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Psychrophilic organisms possess several adaptive strategies which allow them to sustain life at low temperatures between −20 to 20 °C. Studies on Antarctic psychrophiles are interesting due to the multiple stressors that exist on the permanently cold continent. These organisms produce, among other peculiarities, cold-active enzymes which not only have tremendous biotechnological potential but are valuable models for fundamental research into protein structure and function. Recent innovations in omics technologies such as genomics, transcriptomics, proteomics and metabolomics have contributed a remarkable perspective of the molecular basis underpinning the mechanisms of cold adaptation. This review critically discusses similar and different strategies of cold adaptation in the obligate psychrophilic yeast, Glaciozyma antarctica PI12 at the molecular (genome structure, proteins and enzymes, gene expression) and physiological (antifreeze proteins, membrane fluidity, stress-related proteins) levels. Our extensive studies on G. antarctica have revealed significant insights towards the innate capacity of- and the adaptation strategies employed by this psychrophilic yeast for life in the persistent cold. Furthermore, several cold-active enzymes and proteins with biotechnological potential are also discussed.
Collapse
Affiliation(s)
- Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Noor Haza Fazlin Hashim
- Water Quality Laboratory, National Water Research Institute Malaysia (NAHRIM), Ministry of Environment and Water, Jalan Putra Permai, Seri Kembangan 43300, Selangor, Malaysia;
| | - Izwan Bharudin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
5
|
Chen X, Li C, Liu H. Enhanced Recombinant Protein Production Under Special Environmental Stress. Front Microbiol 2021; 12:630814. [PMID: 33935992 PMCID: PMC8084102 DOI: 10.3389/fmicb.2021.630814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/19/2021] [Indexed: 01/09/2023] Open
Abstract
Regardless of bacteria or eukaryotic microorganism hosts, improving their ability to express heterologous proteins is always a goal worthy of elaborate study. In addition to traditional methods including intracellular synthesis process regulation and extracellular environment optimization, some special or extreme conditions can also be employed to create an enhancing effect on heterologous protein production. In this review, we summarize some extreme environmental factors used for the improvement of heterologous protein expression, including low temperature, hypoxia, microgravity and high osmolality. The applications of these strategies are elaborated with examples of well-documented studies. We also demonstrated the confirmed or hypothetical mechanisms of environment stress affecting the host behaviors. In addition, multi-omics techniques driving the stress-responsive research for construction of efficient microbial cell factories are also prospected at the end.
Collapse
Affiliation(s)
- Xinyi Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Hu Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Liu MQ, Li JY, Rehman AU, Xu X, Gu ZJ, Wu RC. Laboratory Evolution of GH11 Endoxylanase Through DNA Shuffling: Effects of Distal Residue Substitution on Catalytic Activity and Active Site Architecture. Front Bioeng Biotechnol 2019; 7:350. [PMID: 31824938 PMCID: PMC6883096 DOI: 10.3389/fbioe.2019.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 11/15/2022] Open
Abstract
Endoxylanase with high specific activity, thermostability, and broad pH adaptability is in huge demand. The mutant library of GH11 endoxylanase was constructed via DNA shuffling by using the catalytic domain of Bacillus amyloliquefaciens xylanase A (BaxA) and Thermomonospora fusca TF xylanase A (TfxA) as parents. A total of 2,250 colonies were collected and 756 of them were sequenced. Three novel mutants (DS153: N29S, DS241: S31R and DS428: I51V) were identified and characterized in detail. For these mutants, three residues of BaxA were substituted by the corresponding one of TfxA_CD. The specific activity of DS153, DS241, and DS428 in the optimal condition was 4.54, 4.35, and 3.9 times compared with the recombinant BaxA (reBaxA), respectively. The optimum temperature of the three mutants was 50°C. The optimum pH for DS153, DS241, and DS428 was 6.0, 7.0, and 6.0, respectively. The catalytic efficiency of DS153, DS241, and DS428 enhanced as well, while their sensitivity to recombinant rice xylanase inhibitor (RIXI) was lower than that of reBaxA. Three mutants have identical hydrolytic function as reBaxA, which released xylobiose–xylopentaose from oat spelt, birchwood, and beechwood xylan. Furthermore, molecular dynamics simulations were performed on BaxA and three mutants to explore the precise impact of gain-of-function on xylanase activity. The tertiary structure of BaxA was not altered under the substitution of distal residues (N29S, S31R, and I51V); it induced slightly changes in active site architecture. The distal impact rescued the BaxA from native conformation (“closed state”) through weakening interactions between “gate” residues (R112, N35 in DS241 and DS428; W9, P116 in DS153) and active site residues (E78, E172, Y69, and Y80), favoring conformations with an “open state” and providing improved activity. The current findings would provide a better and more in-depth understanding of how distal single residue substitution improved the catalytic activity of xylanase at the atomic level.
Collapse
Affiliation(s)
- Ming-Qi Liu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jia-Yi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Xu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhu-Jun Gu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruo-Chen Wu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
7
|
Development of Versatile Vectors for Heterologous Expression in Bacillus. Microorganisms 2018; 6:microorganisms6020051. [PMID: 29875331 PMCID: PMC6027494 DOI: 10.3390/microorganisms6020051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
The discovery of new enzymes for industrial application relies on a robust discovery pipeline. Such a pipeline should facilitate efficient molecular cloning, recombinant expression and functional screening procedures. Previously, we have developed a vector set for heterologous expression in Escherichia coli. Here, we supplement the catalogue with vectors for expression in Bacillus. The vectors are made compatible with a versatile cloning procedure based on type IIS restriction enzymes and T4 DNA ligase, and encompass an effective counter-selection procedure and complement the set of vectors with options for secreted expression. We validate the system with expression of recombinant subtilisins, which are generally challenging to express in a heterologous system. The complementarity of the E. coli and Bacillus systems allows rapid switching between the two commonly used hosts without comprehensive intermediate cloning steps. The vectors described are not limited to the expression of certain enzymes, but could also be applied for the expression of other enzymes for more generalized enzyme discovery or development.
Collapse
|
8
|
Li J, Han Q, Zhang T, Du J, Sun Q, Pang Y. Expression of soluble native protein in Escherichia coli using a cold-shock SUMO tag-fused expression vector. ACTA ACUST UNITED AC 2018; 19:e00261. [PMID: 30009138 PMCID: PMC6042314 DOI: 10.1016/j.btre.2018.e00261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 02/01/2023]
Abstract
Construction of a simple and efficient cloning vector namely, pWMU-19T based on seamless cloning method. The novel pCold-SUMOa vector is suitable for expression of soluble native heterologous proteins. The pCold-SUMOa expression vector can dramatically enhance the stability and activity of target proteins.
At present, approximately 30% of eukaryotic proteins can be expressed in a soluble form in Escherichia coli. In this study, a pCold-SUMOa plasmid was constructed in order to express heterologous proteins fused with SUMO by a cold-shock expression vector. The human cysteine desulfurase NFS1 and a chimeric cysteine desulfurase namely, EH-IscS were successfully expressed in E. coli. The proteins were particularly difficult to be produced functionally, due to their readily sequestered nature. The recombinant cysteine desulfurases that were generated by pCold-SUMOa exhibited higher activity, solubility and stability compared with the well-known plasmid pCold I. In contrast to the pCold TF plasmid, the SUMO tag conferred no biological activity with regard to the conformation of the cysteine desulfurases. Furthermore, the SUMO protease 1 can efficiently recognize the tertiary structure of SUMO and cleave it. The data indicate that the pCold-SUMOa vector is a promising tool for native eukaryotic protein production.
Collapse
Affiliation(s)
- Jianghui Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Enzyme Engineering and Medical Diagnosis, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qinxia Han
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Enzyme Engineering and Medical Diagnosis, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tao Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Enzyme Engineering and Medical Diagnosis, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Du
- People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Qianqian Sun
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Enzyme Engineering and Medical Diagnosis, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yilin Pang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Enzyme Engineering and Medical Diagnosis, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
9
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
10
|
De Santi C, Willassen NP, Williamson A. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome. PLoS One 2016; 11:e0159345. [PMID: 27433797 PMCID: PMC4951047 DOI: 10.1371/journal.pone.0159345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/30/2016] [Indexed: 12/20/2022] Open
Abstract
Background The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15) form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs. Results MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes.
Collapse
Affiliation(s)
- Concetta De Santi
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Nils Peder Willassen
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Adele Williamson
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT—The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
11
|
Bjerga GEK, Lale R, Williamson AK. Engineering low-temperature expression systems for heterologous production of cold-adapted enzymes. Bioengineered 2015; 7:33-8. [PMID: 26710170 PMCID: PMC4878266 DOI: 10.1080/21655979.2015.1128589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Production of psychrophilic enzymes in the commonly used mesophilic expression systems is hampered by low intrinsic stability of the recombinant enzymes at the optimal host growth temperatures. Unless strategies for low-temperature expression are advanced, research on psychrophilic enzymes may end up being biased toward those that can be stably produced in commonly used mesophilic host systems. Two main strategies are currently being explored for the development of low-temperature expression in bacterial hosts: (i) low-temperature adaption of existing mesophilic expression systems, and (ii) development of new psychrophilic hosts. These developments include genetic engineering of the expression cassettes to optimize the promoter/operator systems that regulate heterologous expression. In this addendum we present our efforts in the development of such low-temperature expression systems, and speculate about future advancements in the field and potential applications.
Collapse
Affiliation(s)
- Gro Elin Kjæreng Bjerga
- a University of Tromsø, Norstruct, Department of Chemistry, Faculty of Science and Technology , Tromsø , Norway
| | - Rahmi Lale
- b Norwegian University of Science and Technology , Department of Biotechnology , Trondheim , Norway
| | - Adele Kim Williamson
- a University of Tromsø, Norstruct, Department of Chemistry, Faculty of Science and Technology , Tromsø , Norway
| |
Collapse
|