1
|
Bartels N, van der Voort NTM, Opanasyuk O, Felekyan S, Greife A, Shang X, Bister A, Wiek C, Seidel CAM, Monzel C. Advanced multiparametric image spectroscopy and super-resolution microscopy reveal a minimal model of CD95 signal initiation. SCIENCE ADVANCES 2024; 10:eadn3238. [PMID: 39213362 DOI: 10.1126/sciadv.adn3238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Unraveling the concentration-dependent spatiotemporal organization of receptors in the plasma membrane is crucial to understand cell signal initiation. A paradigm of this process is the oligomerization of CD95 during apoptosis signaling, with different oligomerization models being discussed. Here, we establish the molecular-sensitive approach cell lifetime Förster resonance energy transfer image spectroscopy to determine CD95 configurations in live cells. These data are corroborated by stimulated emission depletion microscopy, confocal photobleaching step analysis, and fluorescence correlation spectroscopy. We probed CD95 interactions for concentrations of ~10 to 1000 molecules per square micrometer, over nanoseconds to hours, and molecular to cellular scales. Quantitative benchmarking was achieved establishing high-fidelity monomer and dimer controls. While CD95 alone is primarily monomeric (~96%) and dimeric (4%), the addition of ligand induces oligomerization to dimers/trimers (~15%) leading to cell death. This study highlights molecular concentration effects and oligomerization dynamics. It reveals a minimal model, where small CD95 oligomers suffice to efficiently initiate signaling.
Collapse
Affiliation(s)
- Nina Bartels
- Experimental Medical Physics, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Oleg Opanasyuk
- Molecular Physical Chemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Suren Felekyan
- Molecular Physical Chemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Annemarie Greife
- Molecular Physical Chemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Xiaoyue Shang
- Experimental Medical Physics, Heinrich-Heine University, Düsseldorf, Germany
| | - Arthur Bister
- Department of Otorhinolaryngology, Head & Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology, Head & Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany
| | - Claus A M Seidel
- Molecular Physical Chemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Cornelia Monzel
- Experimental Medical Physics, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Radoua A, Pernon B, Pernet N, Jean C, Elmallah M, Guerrache A, Constantinescu AA, Hadj Hamou S, Devy J, Micheau O. ptARgenOM-A Flexible Vector For CRISPR/CAS9 Nonviral Delivery. SMALL METHODS 2023:e2300069. [PMID: 37156748 DOI: 10.1002/smtd.202300069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/11/2023] [Indexed: 05/10/2023]
Abstract
Viral-mediated delivery of the CRISPR-Cas9 system is one the most commonly used techniques to modify the genome of a cell, with the aim of analyzing the function of the targeted gene product. While these approaches are rather straightforward for membrane-bound proteins, they can be laborious for intracellular proteins, given that selection of full knockout (KO) cells often requires the amplification of single-cell clones. Moreover, viral-mediated delivery systems, besides the Cas9 and gRNA, lead to the integration of unwanted genetic material, such as antibiotic resistance genes, introducing experimental biases. Here, an alternative non-viral delivery approach is presented for CRISPR/Cas9, allowing efficient and flexible selection of KO polyclonal cells. This all-in-one mammalian CRISPR-Cas9 expression vector, ptARgenOM, encodes the gRNA and the Cas9 linked to a ribosomal skipping peptide sequence followed by the enhanced green fluorescent protein and the puromycin N-acetyltransferase, allowing for transient, expression-dependent selection and enrichment of isogenic KO cells. After evaluation using more than 12 distinct targets in 6 cell lines, ptARgenOM is found to be efficient in producing KO cells, reducing the time required to obtain a polyclonal isogenic cell line by 4-6 folds. Altogether ptARgenOM provides a simple, fast, and cost-effective delivery tool for genome editing.
Collapse
Affiliation(s)
- Abdelmnim Radoua
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
- INSERM, Université de Bourgogne Franche-Comté (UBFC), UMR1231, LNC, Dijon, 21000, France
| | - Baptiste Pernon
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
| | - Nicolas Pernet
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
- INSERM, Université de Bourgogne Franche-Comté (UBFC), UMR1231, LNC, Dijon, 21000, France
| | - Chloé Jean
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne (URCA), Reims, Cedex, 51687, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, 51687, France
| | - Mohammed Elmallah
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Abderrahmane Guerrache
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
- INSERM, Université de Bourgogne Franche-Comté (UBFC), UMR1231, LNC, Dijon, 21000, France
| | | | - Sofiane Hadj Hamou
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
| | - Jérôme Devy
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne (URCA), Reims, Cedex, 51687, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, 51687, France
| | - Olivier Micheau
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
- INSERM, Université de Bourgogne Franche-Comté (UBFC), UMR1231, LNC, Dijon, 21000, France
| |
Collapse
|
3
|
Shalaby KE, Aouida M, Gupta V, Ghanem SS, El-Agnaf OMA. Rapid Assessment of CRISPR Transfection Efficiency and Enrichment of CRISPR Induced Mutations Using a Dual-Fluorescent Stable Reporter System. Front Genome Ed 2022; 4:854866. [PMID: 35386234 PMCID: PMC8978543 DOI: 10.3389/fgeed.2022.854866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
The nuclease activity of the CRISPR-Cas9 system relies on the delivery of a CRISPR-associated protein 9 (Cas9) and a single guide RNA (sgRNA) against the target gene. CRISPR components are typically delivered to cells as either a Cas9/sgRNA ribonucleoprotein (RNP) complex or a plasmid encoding a Cas9 protein along with a sequence-specific sgRNA. Multiple transfection reagents are known to deliver CRISPR-Cas9 components, and delivery vectors are being developed for different purposes by several groups. Here, we repurposed a dual-fluorescence (RFP-GFP-GFP) reporter system to quantify the uptake level of the functional CRISPR-Cas9 components into cells and compare the efficiency of CRISPR delivery vectors. Using this system, we developed a novel and rapid cell-based microplate reader assay that makes possible real-time, rapid, and high throughput quantification of CRISPR nuclease activity. Cells stably expressing this dual-fluorescent reporter construct facilitated a direct quantification of the level of the internalized and functional CRISPR-Cas9 molecules into the cells without the need of co-transfecting fluorescently labeled reporter molecules. Additionally, targeting a reporter gene integrated into the genome recapitulates endogenous gene targeting. Thus, this reporter could be used to optimize various transfection conditions of CRISPR components, to evaluate and compare the efficiency of transfection agents, and to enrich cells containing desired CRISPR-induced mutations.
Collapse
Affiliation(s)
- Karim E. Shalaby
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mustapha Aouida
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Mustapha Aouida, ; Omar M. A. El-Agnaf,
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Simona S. Ghanem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M. A. El-Agnaf
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- *Correspondence: Mustapha Aouida, ; Omar M. A. El-Agnaf,
| |
Collapse
|
4
|
Feng S, Wang Z, Li A, Xie X, Liu J, Li S, Li Y, Wang B, Hu L, Yang L, Guo T. Strategies for High-Efficiency Mutation Using the CRISPR/Cas System. Front Cell Dev Biol 2022; 9:803252. [PMID: 35198566 PMCID: PMC8860194 DOI: 10.3389/fcell.2021.803252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems have revolutionized traditional gene-editing tools and are a significant tool for ameliorating gene defects. Characterized by high target specificity, extraordinary efficiency, and cost-effectiveness, CRISPR/Cas systems have displayed tremendous potential for genetic manipulation in almost any organism and cell type. Despite their numerous advantages, however, CRISPR/Cas systems have some inherent limitations, such as off-target effects, unsatisfactory efficiency of delivery, and unwanted adverse effects, thereby resulting in a desire to explore approaches to address these issues. Strategies for improving the efficiency of CRISPR/Cas-induced mutations, such as reducing off-target effects, improving the design and modification of sgRNA, optimizing the editing time and the temperature, choice of delivery system, and enrichment of sgRNA, are comprehensively described in this review. Additionally, several newly emerging approaches, including the use of Cas variants, anti-CRISPR proteins, and mutant enrichment, are discussed in detail. Furthermore, the authors provide a deep analysis of the current challenges in the utilization of CRISPR/Cas systems and the future applications of CRISPR/Cas systems in various scenarios. This review not only serves as a reference for improving the maturity of CRISPR/Cas systems but also supplies practical guidance for expanding the applicability of this technology.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
5
|
Chien JCY, Tabet E, Pinkham K, da Hora CC, Chang JCY, Lin S, Badr CE, Lai CPK. A multiplexed bioluminescent reporter for sensitive and non-invasive tracking of DNA double strand break repair dynamics in vitro and in vivo. Nucleic Acids Res 2020; 48:e100. [PMID: 32797168 PMCID: PMC7515717 DOI: 10.1093/nar/gkaa669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Tracking DNA double strand break (DSB) repair is paramount for the understanding and therapeutic development of various diseases including cancers. Herein, we describe a multiplexed bioluminescent repair reporter (BLRR) for non-invasive monitoring of DSB repair pathways in living cells and animals. The BLRR approach employs secreted Gaussia and Vargula luciferases to simultaneously detect homology-directed repair (HDR) and non-homologous end joining (NHEJ), respectively. BLRR data are consistent with next-generation sequencing results for reporting HDR (R2 = 0.9722) and NHEJ (R2 = 0.919) events. Moreover, BLRR analysis allows longitudinal tracking of HDR and NHEJ activities in cells, and enables detection of DSB repairs in xenografted tumours in vivo. Using the BLRR system, we observed a significant difference in the efficiency of CRISPR/Cas9-mediated editing with guide RNAs only 1-10 bp apart. Moreover, BLRR analysis detected altered dynamics for DSB repair induced by small-molecule modulators. Finally, we discovered HDR-suppressing functions of anticancer cardiac glycosides in human glioblastomas and glioma cancer stem-like cells via inhibition of DNA repair protein RAD51 homolog 1 (RAD51). The BLRR method provides a highly sensitive platform to simultaneously and longitudinally track HDR and NHEJ dynamics that is sufficiently versatile for elucidating the physiology and therapeutic development of DSB repair.
Collapse
Affiliation(s)
| | - Elie Tabet
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA.,Department of Biomedical Engineering, University of South Dakota, 4800 N. Career Ave, Suite 221, Sioux Falls, Vermillion, SD 57069, USA
| | - Kelsey Pinkham
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Cintia Carla da Hora
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA.,Neuroscience Program, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Cheng-Yu Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Steven Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Christian E Badr
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA.,Neuroscience Program, Harvard Medical School, Boston, MA 02115, USA
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
6
|
Xiao L, Xu J, Weng Q, Zhou L, Wang M, Liu M, Li Q. Mechanism of a Novel Camptothecin-Deoxycholic Acid Derivate Induced Apoptosis against Human Liver Cancer HepG2 Cells and Human Colon Cancer HCT116 Cells. Recent Pat Anticancer Drug Discov 2019; 14:370-382. [PMID: 31644410 DOI: 10.2174/1574892814666191016162346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Camptothecin (CPT) is known as an anticancer drug in traditional Chinese medicine. However, due to the lack of targeting, low solubility, and instability of CPT, its therapeutic applications are hampered. Therefore, we synthesized a series of CPT-bile acid analogues that obtained a national patent to improve their tumour-targeting chemotherapeutic effects on liver or colon cancers. Among these analogues, the compound G2 shows high antitumor activity with enhanced liver targeting and improved oral absorption. It is significant to further investigate the possible anticancer mechanism of G2 for its further clinical research and application. OBJECTIVE We aimed to unearth the anticancer mechanism of G2 in HepG2 and HCT116 cells. METHODS Cell viability was measured using MTT assay; cell cycle, Mitochondrial Membrane Potential (MMP), and cell apoptosis were detected by flow cytometer; ROS was measured by Fluorescent Microplate Reader; the mRNA and protein levels of cell cycle-related and apoptosis-associated proteins were examined by RT-PCR and western blot, respectively. RESULTS We found that G2 inhibited cells proliferation of HepG2 and HCT116 remarkably in a dosedependent manner. Moreover, G2-treatment led to S and G2/M phase arrest in both cells, which could be elucidated by the change of mRNA levels of p21, p27 and Cyclin E and the increased protein level of p21. G2 also induced dramatically ROS accumulated and MMP decreased, which contributed to the apoptosis through activation of both the extrinsic and intrinsic pathways via changing the genes and proteins expression involved in apoptosis pathway in both of HepG2 and HCT116 cells. CONCLUSION These findings suggested that the apoptosis in both cell lines induced by G2 was related to the extrinsic and intrinsic pathways.
Collapse
Affiliation(s)
- Linxia Xiao
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Jialin Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qi Weng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Leilei Zhou
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Mengke Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Miao Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Ren C, Xu K, Segal DJ, Zhang Z. Strategies for the Enrichment and Selection of Genetically Modified Cells. Trends Biotechnol 2018; 37:56-71. [PMID: 30135027 DOI: 10.1016/j.tibtech.2018.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
Programmable artificial nucleases have transitioned over the past decade from ZFNs and TALENs to CRISPR/Cas systems, which have been ubiquitously used with great success to modify genomes. The efficiencies of knockout and knockin vary widely among distinct cell types and genomic loci and depend on the nuclease delivery and cleavage efficiencies. Moreover, genetically modified cells are almost phenotypically indistinguishable from normal counterparts, making screening and isolating positive cells rather challenging and time-consuming. To address this issue, we review several strategies for the enrichment and selection of genetically modified cells, including transfection-positive selection, nuclease-positive selection, genome-targeted positive selection, and knockin-positive selection, to provide a reference for future genome research and gene therapy studies.
Collapse
Affiliation(s)
- Chonghua Ren
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China; College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA; These authors contributed equally to this article
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; These authors contributed equally to this article
| | - David Jay Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Abstract
The T7 endonuclease 1 (T7E1) mismatch detection assay is a widely used method for evaluating the activity of site-specific nucleases, such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system. To determine the accuracy and sensitivity of this assay, we compared the editing estimates derived by the T7E1 assay with that of targeted next-generation sequencing (NGS) in pools of edited mammalian cells. Here, we report that estimates of nuclease activity determined by T7E1 most often do not accurately reflect the activity observed in edited cells. Editing efficiencies of CRISPR-Cas9 complexes with similar activity by T7E1 can prove dramatically different by NGS. Additionally, we compared editing efficiencies predicted by the Tracking of Indels by Decomposition (TIDE) assay and the Indel Detection by Amplicon Analysis (IDAA) assay to that observed by targeted NGS for both cellular pools and single-cell derived clones. We show that targeted NGS, TIDE, and IDAA assays predict similar editing efficiencies for pools of cells but that TIDE and IDAA can miscall alleles in edited clones.
Collapse
|
10
|
Periwal V. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Brief Bioinform 2016; 18:698-711. [DOI: 10.1093/bib/bbw052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/26/2022] Open
|