1
|
Kang L, Zhang Y, Gong Q, Das CM, Shao H, Poenar DP, Coquet P, Yong KT. Label-free plasmonic-based biosensing using a gold nanohole array chip coated with a wafer-scale deposited WS 2 monolayer. RSC Adv 2022; 12:33284-33292. [DOI: 10.1039/d2ra03479d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
This paper reports a novel plasmonic sensor chip made up of a gold nanohole array chip coated with a WS2 monolayer, which is then functionalized for the detection of protein–protein interactions.
Collapse
Affiliation(s)
- Lixing Kang
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117583, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qian Gong
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chandreyee Manas Das
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117583, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Daniel Puiu Poenar
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520 – Université de Lille 1, Villeneuve d’Ascq 59650, France
| | - Ken-Tye Yong
- The University of Sydney Nano Institute, The University of Sydney, Sydney 2006, New South Wales, Australia
| |
Collapse
|
2
|
Sakairi H, Kamikubo Y, Abe M, Ikeda K, Ichiki A, Tabata T, Kano M, Sakurai T. G Protein-Coupled Glutamate and GABA Receptors Form Complexes and Mutually Modulate Their Signals. ACS Chem Neurosci 2020; 11:567-578. [PMID: 31977183 DOI: 10.1021/acschemneuro.9b00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Molecular networks containing various proteins mediate many types of cellular processes. Elucidation of how the proteins interact will improve our understanding of the molecular integration and physiological and pharmacological propensities of the network. One of the most complicated and unexplained interactions between proteins is the inter-G protein-coupled receptor (GPCR) interaction. Recently, many studies have suggested that an interaction between neurotransmitter GPCRs may mediate diverse modalities of neural responses. The B-type gamma-aminobutyric acid (GABA) receptor (GBR) and type-1 metabotropic glutamate receptor (mGluR1) are GPCRs for GABA and glutamate, respectively, and each plays distinct roles in controlling neurotransmission. We have previously reported the possibility of their functional interaction in central neurons. Here, we examined the interaction of these GPCRs using stable cell lines and rat cerebella. Cell-surface imaging and coimmunoprecipitation analysis revealed that these GPCRs interact on the cell surface. Furthermore, fluorometry revealed that these GPCRs mutually modulate signal transduction. These findings provide solid evidence that mGluR1 and GBR have intrinsic abilities to form complexes and to mutually modulate signaling. These findings indicate that synaptic plasticity relies on a network of proteins far more complex than previously assumed.
Collapse
Affiliation(s)
- Hakushun Sakairi
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masayoshi Abe
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Keisuke Ikeda
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Arata Ichiki
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Toshihide Tabata
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
3
|
Wang D, Loo JFC, Chen J, Yam Y, Chen SC, He H, Kong SK, Ho HP. Recent Advances in Surface Plasmon Resonance Imaging Sensors. SENSORS 2019; 19:s19061266. [PMID: 30871157 PMCID: PMC6471112 DOI: 10.3390/s19061266] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
The surface plasmon resonance (SPR) sensor is an important tool widely used for studying binding kinetics between biomolecular species. The SPR approach offers unique advantages in light of its real-time and label-free sensing capabilities. Until now, nearly all established SPR instrumentation schemes are based on single- or several-channel configurations. With the emergence of drug screening and investigation of biomolecular interactions on a massive scale these days for finding more effective treatments of diseases, there is a growing demand for the development of high-throughput 2-D SPR sensor arrays based on imaging. The so-called SPR imaging (SPRi) approach has been explored intensively in recent years. This review aims to provide an up-to-date and concise summary of recent advances in SPRi. The specific focuses are on practical instrumentation designs and their respective biosensing applications in relation to molecular sensing, healthcare testing, and environmental screening.
Collapse
Affiliation(s)
- Dongping Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jacky Fong Chuen Loo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jiajie Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yeung Yam
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shih-Chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siu Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ho Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
A Sensitive and Stable Surface Plasmon Resonance Sensor Based on Monolayer Protected Silver Film. SENSORS 2017; 17:s17122777. [PMID: 29189753 PMCID: PMC5751622 DOI: 10.3390/s17122777] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
Abstract
In this paper, we present a stable silver-based surface plasmon resonance (SPR) sensor using a self-assembled monolayer (SAM) as a protection layer and investigated its efficiency in water and 0.01 M phosphate buffered saline (PBS). By simulation, silver-based SPR sensor has a better performance in field enhancement and penetration depth than that of a gold-based SPR sensor, which are 5 and 1.4 times, respectively. To overcome the instability of the bare silver film and investigate the efficiency of the protected layer, the SAM of 11-mercapto-1-undecanol (MUD) was used as a protection layer. Stability experiment results show that the protected silver film exhibited excellent stability either in pure water or 0.01 M PBS buffer. The sensitivity of the silver-based SPR sensor was calculated to be 127.26 deg/RIU (refractive index unit), measured with different concentrations of NaCl solutions. Further, a very high refractive resolution for the silver-based SPR sensor was found to be 2.207 × 10−7 RIU, which reaches the theoretical limit in the wavelength of 632.8 nm for a SPR sensor reported in the literature. Using a mixed SAM of 16-mercaptohexadecanoic acid (MHDA) and a MUD layer with a ratio of 1:10, this immunosensor for the rabbit immunoglobulin G (IgG) molecule with a limit of detection as low as 22.516 ng/mL was achieved.
Collapse
|