1
|
González-Cortés JJ, Lamprea-Pineda PA, Ramírez M, Demeestere K, Van Langenhove H, Walgraeve C. Biofiltration of gaseous mixtures of dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide: Effect of operational conditions and microbial analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121320. [PMID: 38843750 DOI: 10.1016/j.jenvman.2024.121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The efficient removal of volatile sulfur compounds (VSCs), such as dimethyl sulfide (DMS), dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS), is crucial due to their foul odor and corrosive potential in sewer systems. Biofilters (BFs) offer promise for VSCs removal, but face challenges related to pH control and changing conditions at full scale. Two BFs, operated under acidophilic conditions for 78 days, were evaluated for their performance at varying inlet concentrations and empty bed residence times (EBRTs). BF1, incorporating 4-6 mm marble limestone for pH control, outperformed BF2, which used NaHCO3 in the nutrient solution. BF1 displayed better resilience, maintained a stable pH of 4.6 ± 0.6, and achieved higher maximum elimination capacities (ECmax, 41 mg DMS m-3 h-1 (RE 38.3%), 146 mg DMDS m-3 h-1 (RE 83.1%), 47 mg DMTS m-3 h-1 (RE 93.1%)) at an EBRT of 56 s compared to BF2 (9 mg DMS m-3 h-1 (RE 7.1%), 9 mg DMDS m-3 h-1 (RE 4.8%) and 11 mg DMTS m-3 h-1 (RE 26.6%)). BF2 exhibited pH stratification and decreased performance after feeding interruptions. The biodegradability of VSCs followed the order DMTS > DMDS > DMS, and several microorganisms were identified contributing to VSCs degradation in BF1, including Bacillus (14%), Mycobacterium (11%), Acidiphilium (7%), and Acidobacterium (3%).
Collapse
Affiliation(s)
- J J González-Cortés
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Cádiz, Spain; Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - P A Lamprea-Pineda
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - M Ramírez
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Cádiz, Spain
| | - K Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - H Van Langenhove
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - C Walgraeve
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Cui Z, Li R, Li F, Jin L, Wu H, Cheng C, Ma Y, Wang Z, Wang Y. Structural characteristics and diversity of the rhizosphere bacterial communities of wild Fritillaria przewalskii Maxim. in the northeastern Tibetan Plateau. Front Microbiol 2023; 14:1070815. [PMID: 36876117 PMCID: PMC9981654 DOI: 10.3389/fmicb.2023.1070815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Fritillaria przewalskii Maxim. is a Chinese endemic species with high medicinal value distributed in the northeastern part of the Tibetan Plateau. F. przewalskii root-associated rhizosphere bacterial communities shaped by soil properties may maintain the stability of soil structure and regulate F. przewalskii growth, but the rhizosphere bacterial community structure of wild F. przewalskii from natural populations is not clear. Methods In the current study, soil samples from 12 sites within the natural range of wild F. przewalskii were collected to investigate the compositions of bacterial communities via high-throughput sequencing of 16S rRNA genes and multivariate statistical analysis combined with soil properties and plant phenotypic characteristics. Results Bacterial communities varied between rhizosphere and bulk soil, and also between sites. Co-occurrence networks were more complex in rhizosphere soil (1,169 edges) than in bulk soil (676 edges). There were differences in bacterial communities between regions, including diversity and composition. Proteobacteria (26.47-37.61%), Bacteroidetes (10.53-25.22%), and Acidobacteria (10.45-23.54%) were the dominant bacteria, and all are associated with nutrient cycling. In multivariate statistical analysis, both soil properties and plant phenotypic characteristics were significantly associated with the bacterial community (p < 0.05). Soil physicochemical properties accounted for most community differences, and pH was a key factor (p < 0.01). Interestingly, when the rhizosphere soil environment remained alkaline, the C and N contents were lowest, as was the biomass of the medicinal part bulb. This might relate to the specific distribution of genera, such as Pseudonocardia, Ohtaekwangia, Flavobacterium (relative abundance >0.01), which all have significantly correlated with the biomass of F. przewalskii (p < 0.05). Discussion F. przewalskii is evidently averse to alkaline soil with high potassium contents, but this requires future verification. The results of the present study may provide theoretical guidance and new insights for the cultivation and domestication of F. przewalskii.
Collapse
Affiliation(s)
- Zhijia Cui
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Ran Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Haixu Wu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunya Cheng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yi Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Zhenheng Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Yuanyuan Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Vitko TG, Cowden S, Suffet IHM. Evaluation of bioscrubber and biofilter technologies treating wastewater foul air by a new approach of using odor character, odor intensity, and chemical analyses. WATER RESEARCH 2022; 220:118691. [PMID: 35691191 DOI: 10.1016/j.watres.2022.118691] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The treatment of raw foul air that could escape to the atmosphere from the head space of the incoming wastewater into a Southern California Water Resource Recovery Facility was evaluated by using a 1/20th scale pilot unit consisting of five different biological media technologies, operating side by side, under different operating conditions. The removal of six different odor characters from eight chemical odorants present in the foul air were assessed. These were rotten egg (Hydrogen Sulfide), rotten vegetables (Methyl Mercaptan), canned corn (Dimethyl Sulfide), rotten garlic (Dimethyl Disulfide), earthy/musty (2-Methyl Isoborneol and 2-Isopropyl 3-Methyl Pyrazine) and fecal (Skatole and Indole). This is the first time a study evaluates specific odors by simultaneously employing sensory analyses using the Odor Profile Method, which defines the different odor characters and intensities, together with chemical analyses of the compounds causing these odors, known as odorants. The paper discusses the efficiencies in removing odor characters as well as odorants by two different bioscrubbers (reticulated polyurethane cube foam and polypropylene mesh with layered polyester foam) and three different biofilters (engineered media, seashells, and lava rock). The results show that the two bioscrubbers, even with greater empty bed gas retention times, did not provide significant improvement in odor intensity and odorant removal. However, the biofilters showed that larger empty bed gas retention times provided significant improvements in diminishing the odor intensities and better odorant removal. The biofilter with lava rock media at 45 s empty bed gas retention time provided the best treatment among the technologies tested, achieving the following odorant reductions: 99.8% for hydrogen sulfide, 98.4% for methyl mercaptan, 57.0% for dimethyl sulfide, and 52.7 for dimethyl disulfide. This biofilter also achieved the following odor intensity reductions: 47% for rotten vegetable odors, 50% for earthy/musty odors, and 100% for fecal odors. The odor panel detected odors by the Odor Profile Method that were below the detection limit of the corresponding chemical analytical method for specific chemical compounds causing these odors. Differences were observed between the performances of bioscrubbers and biofilters, based on odorant removal compared to those based on sensorial analyses, indicating that both analyses are required to understand more fully the odor dynamics. Furthermore, a total odor removal of 99.2% was observed by the dilution to threshold olfactometer method even though nearly half of the rotten vegetable and earthy/musty odors remained based upon the Odor Profile Method. This shows the olfactometer method did not correctly define the degree of odor nuisance in the foul air in this study. Bioscrubbers have in general a better economic return when used at low EBGRTs and as preliminary (first stage) treatment systems. Biofilters are more effective when used at high EBGRTs and can be used as stand-alone or polishing systems.
Collapse
Affiliation(s)
- Tadeo G Vitko
- Engineer (Retired) at Orange County Sanitation District, 26362 Via Conchita, Mission Viejo, California 92691, United States.
| | - Scott Cowden
- Jacobs Engineering, 1100 NE Circle Blvd, Suite 300, Corvallis OR 97330, United States
| | - Irwin H Mel Suffet
- UCLA, Department of Environmental Health Sciences, School of Public Health, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Hydrogen Sulfide Capture and Removal Technologies: A Comprehensive Review of Recent Developments and Emerging Trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Lei J, Li G, Yu H, An T. Potent necrosis effect of methanethiol mediated by METTL7B enzyme bioactivation mechanism in 16HBE cell. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113486. [PMID: 35397445 DOI: 10.1016/j.ecoenv.2022.113486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Methanethiol is a widely existing malodorous pollutant with health effects on the human population. However, the cytotoxicity mechanism of methanethiol in vitro and its metabolic transformation (bioactivation or detoxification) have not been fully elucidated. Herein, the metabolites of methanethiol during cell culture and the cytotoxicity of methanethiol in human bronchial epithelial (16HBE) cells were investigated. Results indicate that methanethiol (10-50 μM) was partially converted into dimethyl sulfide, mainly catalyzed by thiol S-methyltransferase in the 16HBE cells, and then it induced potent cytotoxicity and cell membrane permeability. Moreover, methanethiol induced intracellular reactive oxygen species (ROS) up to 50 μM and further activated the tumor necrosis factor (TNF) signaling pathway, which eventually led to the decline in the mitochondrial membrane potential (MMP) and cell necrosis. However, all these effects were significantly alleviated with gene silencing of the methyltransferase-like protein 7B (METTL7B). These results indicate that methanethiol may induce cell necrosis in human respiratory tract cells mainly mediated by S-methyltransferase with interfering TNF and ROS induction. Non-target metabolomics results suggest that methanethiol potently affects expression of endogenous small molecule metabolites in 16HBE cells. To some extent, this work shows the possible conversion path and potential injury mechanism of human respiratory tract cells exposed to methanethiol.
Collapse
Affiliation(s)
- Jinting Lei
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Co-Treatment with Single and Ternary Mixture Gas of Dimethyl Sulfide, Propanethiol, and Toluene by a Macrokinetic Analysis in a Biotrickling Filter Seeded with Alcaligenes sp. SY1 and Pseudomonas Putida S1. FERMENTATION 2021. [DOI: 10.3390/fermentation7040309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The biotrickling filter (BTF) treatment is an effective way of dealing with air pollution caused by volatile organic compounds (VOCs). However, this approach is typically used for single VOCs treatment but not for the mixtures of VOC and volatile organic sulfur compounds (VOSCs), even if they are often encountered in industrial applications. Therefore, we investigated the performance of BTF for single and ternary mixture gas of dimethyl sulfide (DMS), propanethiol, and toluene, respectively. Results showed that the co-treatment enhanced the removal efficiency of toluene, but not of dimethyl sulfide or propanethiol. Maximum removal rates (rmax) of DMS, propanethiol and toluene were calculated to be 256.41 g·m−3·h−1, 204.08 g·m−3·h−1 and 90.91 g·m−3·h−1, respectively. For a gas mixture of these three constituents, rmax was measured to be 114.94 g·m−3·h−1, 104.17 g·m−3·h−1 and 99.01 g·m−3·h−1, separately. Illumina MiSeq sequencing analysis further indicated that Proteobacteria and Bacteroidetes were the major bacterial groups in BTF packing materials. A shift of bacterial community structure was observed during the biodegradation process.
Collapse
|
7
|
Boada E, Santos-Clotas E, Cabrera-Codony A, Martín MJ, Bañeras L, Gich F. The core microbiome is responsible for volatile silicon and organic compounds degradation during anoxic lab scale biotrickling filter performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149162. [PMID: 34333428 DOI: 10.1016/j.scitotenv.2021.149162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Volatile silicon compounds present in the biogas of anaerobic digesters can cause severe problems in the energy recovery systems, inducing costly damages. Herein, the microbial community of a lab-scale biotrickling filter (BTF) was studied while testing its biodegradation capacity on octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5), in the presence of toluene, limonene and hexane. The reactor performance was tested at different empty bed residence times (EBRT) and packing materials. Community structure was analysed by bar-coded amplicon sequencing of the 16S rRNA gene. Microbial diversity and richness were higher in the inoculum and progressively decreased during BTF operation (Simpson's diversity index changing from 0.98-0.90 and Richness from 900 to 200 OTUs). Minimum diversity was found when reactor was operated at relatively low EBRT (7.3 min) using a multicomponent feed. The core community was composed of 36 OTUs (accounting for 55% of total sequences). Packing material played a key role in the community structure. Betaproteobacteriales were dominant in the presence of lava rock and were partially substituted by Corynebacteriales and Rhizobiales when activated carbon was added to the BTF. Despite these changes, a stable and resilient core microbiome was selected defining a set of potentially degrading bacteria for siloxane bioremoval as a complementary alternative to non-regenerative adsorption onto activated carbon.
Collapse
Affiliation(s)
- Ellana Boada
- Molecular Microbial Ecology Group (gEMM), Institute of Aquatic Ecology, Faculty of Sciences, University of Girona, 17003 Girona, Spain.
| | - Eric Santos-Clotas
- LEQUIA, Institute of the Environment, University of Girona, 17003 Girona, Spain.
| | - Alba Cabrera-Codony
- LEQUIA, Institute of the Environment, University of Girona, 17003 Girona, Spain.
| | - Maria J Martín
- LEQUIA, Institute of the Environment, University of Girona, 17003 Girona, Spain.
| | - Lluís Bañeras
- Molecular Microbial Ecology Group (gEMM), Institute of Aquatic Ecology, Faculty of Sciences, University of Girona, 17003 Girona, Spain.
| | - Frederic Gich
- Molecular Microbial Ecology Group (gEMM), Institute of Aquatic Ecology, Faculty of Sciences, University of Girona, 17003 Girona, Spain.
| |
Collapse
|
8
|
Bu H, Carvalho G, Yuan Z, Bond P, Jiang G. Biotrickling filter for the removal of volatile sulfur compounds from sewers: A review. CHEMOSPHERE 2021; 277:130333. [PMID: 33780683 DOI: 10.1016/j.chemosphere.2021.130333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Volatile sulfur compounds (VSCs) were identified as the dominant priority odorants emitted from sewers, including hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl disulfide (DMDS) and dimethyl sulfide (DMS). Biotrickling filter (BTF) is a widely-applied technology for odour abatement in sewers because of its relatively low operating cost and efficient H2S removal. The authors review the mechanisms and performance of BTF for the removal of these four VSCs, and discuss the key influencing factors including of empty bed residence time (EBRT), pH, temperature, nutrients, water content, trickling operation and packing materials. Besides, measures to improve the VSCs removal in BTF are proposed in the context of key influencing factors. Finally, the review assesses the new challenges of BTF for sewer emissions treatment, namely with respect to the performance of BTF for greenhouse gases (GHG) treatment.
Collapse
Affiliation(s)
- Hao Bu
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Philip Bond
- School of Biomedical Sciences, Queensland University of Technology, QLD, Australia
| | - Guangming Jiang
- School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, Australia.
| |
Collapse
|
9
|
Comparative Performance Evaluation of Commercial Packing Materials for Malodorants Abatement in Biofiltration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Packing materials used in biofiltration of gaseous pollutants represent a key design parameter, as a proper selection might not only determine the adequate performance of the system but also its cost-effectiveness. This study systematically assessed and compared the performance of a conventional plastic carrier with that of two novel clay-based materials from SAINT GOBAIN for the abatement of a model odorous stream composed of H2S, methylmercaptan and toluene. The packing materials were tested in biotrickling filters, biofilters and a two-phase biotrickling filter. SAINT GOBAIN materials exhibited a higher adsorption potential under abiotic conditions, a higher buffer capacity and a superior performance compared to conventional plastic rings when implemented in biotrickling filters operating at gas residence times as low as 7.5 s. Among the materials tested in biofilters, Filtralite Air AC supported almost complete H2S and toluene removals at a gas residence time of 20 s, while successfully eliminating methylmercaptan at values of ~80%. Interestingly, under most of the conditions tested, clay-based materials also showed comparable pressure drop values than those of plastic rings.
Collapse
|
10
|
Kiragosyan K, Picard M, Sorokin DY, Dijkstra J, Klok JBM, Roman P, Janssen AJH. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H 2S removal from sour gas streams. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121916. [PMID: 31884361 DOI: 10.1016/j.jhazmat.2019.121916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Removal of organic and inorganic sulfur compounds from sour gases is required because of their toxicity and atmospheric pollution. The most common are hydrogen sulfide (H2S) and methanethiol (MT). Under oxygen-limiting conditions about 92 mol% of sulfide is oxidized to sulfur by haloalkaliphilic sulfur-oxidizing bacteria (SOB), whilst the remainder is oxidized either biologically to sulfate or chemically to thiosulfate. MT is spontaneously oxidized to dimethyl disulfide (DMDS), which was found to inhibit the oxidation of sulfide to sulfate. Hence, we assessed the effect of DMDS on product formation in a lab-scale biodesulfurization setup. DMDS was quantified using a newly, in-house developed analytical method. Subsequently, a chemical reaction mechanism was proposed for the formation of methanethiol and dimethyl trisulfide from the reaction between sulfide and DMDS. Addition of DMDS resulted in significant inhibition of sulfate formation, leading to 96 mol% of sulfur formation. In addition, a reduction in the dominating haloalkaliphilic SOB species, Thioalkalivibrio sulfidiphilus, was observed in favor of Thioalkaibacter halophilus as a more DMDS-tolerant with the 50 % inhibition coefficient at 2.37 mM DMDS.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Magali Picard
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Eurofins Agroscience Services Chem SAS 75, chemin de Sommières 30310, Vergèze, France
| | - Dimitry Y Sorokin
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jelmer Dijkstra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Shell, Oostduinlaan 2, 2596 JM the Hague, The Netherlands
| |
Collapse
|