1
|
Thilmony R, Dasgupta K, Shao M, Harris D, Hartman J, Harden LA, Chan R, Thomson JG. Tissue-specific expression of Ruby in Mexican lime ( C. aurantifolia) confers anthocyanin accumulation in fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:945738. [PMID: 36003820 PMCID: PMC9393592 DOI: 10.3389/fpls.2022.945738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Tissue specific promoters are important tools for the precise genetic engineering of crop plants. Four fruit-preferential promoters were examined for their ability to confer a novel fruit trait in transgenic Mexican lime (Citrus aurantifolia). The Ruby transcription factor activates fruit anthocyanin accumulation within Moro blood orange and has been shown to function in activating anthocyanin accumulation in heterologous plant species. Although the CitVO1, CitUNK, SlE8, and PamMybA promoters were previously shown to confer strong fruit-preferential expression in transgenic tomato, they exhibited no detectable expression in transgenic Mexican lime trees. In contrast, the CitWax promoter exhibited high fruit-preferential expression of Ruby, conferring strong anthocyanin accumulation within the fruit juice sac tissue and moderate activity in floral/reproductive tissues. In some of the transgenic trees with high levels of flower and fruit anthocyanin accumulation, juvenile leaves also exhibited purple coloration, but the color disappeared as the leaves matured. We show that the CitWax promoter enables the expression of Ruby to produce anthocyanin colored fruit desired by consumers. The production of this antioxidant metabolite increases the fruits nutritional value and may provide added health benefits.
Collapse
Affiliation(s)
- Roger Thilmony
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| | - Kasturi Dasgupta
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
- Citrus Research Board, Visalia, CA, United States
| | - Min Shao
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
- Citrus Research Board, Visalia, CA, United States
| | - Daren Harris
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| | - Jake Hartman
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| | - Leslie A. Harden
- Produce Safety and Microbiology Research, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| | - Ron Chan
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| | - James G. Thomson
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| |
Collapse
|
2
|
Kim HM, Park SH, Park SY, Ma SH, Do JH, Kim AY, Jeon MJ, Shim JS, Joung YH. Identification of essential element determining fruit-specific transcriptional activity in the tomato HISTIDINE DECARBOXYLASE A gene promoter. PLANT CELL REPORTS 2022; 41:1721-1731. [PMID: 35739429 DOI: 10.1007/s00299-022-02886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
In SlHDC-A promoter, SlHDC-A core-ES is an essential region for fruit-specific expression and interacts with GATA, HSF and AP1. Triplication of essential region was proposed as a minimal fruit-specific promoter. In plant biotechnology, fruit-specific promoter is an important tool for the improvement and utilization of tomato fruit. To expand our understanding on fruit-specific expression, it is necessary to determine the promoter region involved in fruit-specific transcriptional activity and transcriptional regulations of the promoter. In previous study, we isolated a fruit-specific SlHDC-A core promoter specifically expressed during tomato ripening stages. In this study, we identified SlHDC-A promoter region (SlHDC-A core-ES) that is essential for fruit-specific expression of the SlHDC-A. To understand the molecular mechanisms of fruit-specific expression of the SlHDC-A promoter, we first identified the putative transcription factor binding elements in the SlHDC-A core promoter region and corresponding putative transcription factors which are highly expressed during fruit maturation. Yeast one hybrid analysis confirmed that GATA, HSF, and AP1 interact with the SlHDC-A core-ES promoter region. Further transactivation analysis revealed that expression of the three transcription factors significantly activated expression of a reporter gene driven by SlHDC-A core-ES promoter. These results suggest that GATA, HSF, and AP1 are involved in the fruit-specific expression of SlHDC-A promoter. Furthermore, the synthetic promoter composed of three tandem repeats of SlHDC-A core-ES showed relatively higher activity than the constitutive 35S promoter in the transgenic tomato fruits at the orange stage. Taken together, we propose a new synthetic promoter that is specifically expressed during fruit ripening stage.
Collapse
Affiliation(s)
- Hyun Min Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Se Hee Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seo Young Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sang Hoon Ma
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ju Hui Do
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ah Young Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mi Jin Jeon
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
3
|
Identification and Characterization of Two Putative Citrus Phosphomannose Isomerase (CsPMI) Genes as Selectable Markers for Mature Citrus Transformation. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two Citrus sinensis (L.) phosphomannose isomerase (PMI) genes, CsPMI1 and CsPMI2, were evaluated as novel selectable markers in mature citrus transformation. Transgenic shoots produced after transformation of Kuharske rootstock with each PMI construct were selected on six treatments of mannose and sucrose. For CsPMI1, there were no significant differences among the various mannose and sucrose treatments for the mean number of positive shoots (PS), the mean transformation efficiency based on the number of shoots (TES), or the mean transformation efficiency based on the number of explants (TEE). However, for the CsPMI2 gene, the number of transgenics produced in two treatments (7.5 g L−1 mannose + 22.5 g L−1 sucrose and 15 g L−1 mannose + 15 g L−1 sucrose) was significantly greater than the sucrose control for TES at 4.2% and 3.7%, respectively. Moreover, TEE at 4.2% in the 15 g L−1 mannose + 15 g L−1 sucrose treatment, supported the TES value. Most of the transgenic lines demonstrated higher in vivo and in vitro enzyme assays compared with the wild-type control. CsPMI2 provided acceptable selection in mature citrus, and it will be applied in future intragenic research.
Collapse
|
4
|
Conti G, Xoconostle-Cázares B, Marcelino-Pérez G, Hopp HE, Reyes CA. Citrus Genetic Transformation: An Overview of the Current Strategies and Insights on the New Emerging Technologies. FRONTIERS IN PLANT SCIENCE 2021; 12:768197. [PMID: 34917104 PMCID: PMC8670418 DOI: 10.3389/fpls.2021.768197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 05/04/2023]
Abstract
Citrus are among the most prevailing fruit crops produced worldwide. The implementation of effective and reliable breeding programs is essential for coping with the increasing demands of satisfactory yield and quality of the fruit as well as to deal with the negative impact of fast-spreading diseases. Conventional methods are time-consuming and of difficult application because of inherent factors of citrus biology, such as their prolonged juvenile period and a complex reproductive stage, sometimes presenting infertility, self-incompatibility, parthenocarpy, or polyembryony. Moreover, certain desirable traits are absent from cultivated or wild citrus genotypes. All these features are challenging for the incorporation of the desirable traits. In this regard, genetic engineering technologies offer a series of alternative approaches that allow overcoming the difficulties of conventional breeding programs. This review gives a detailed overview of the currently used strategies for the development of genetically modified citrus. We describe different aspects regarding genotype varieties used, including elite cultivars or extensively used scions and rootstocks. Furthermore, we discuss technical aspects of citrus genetic transformation procedures via Agrobacterium, regular physical methods, and magnetofection. Finally, we describe the selection of explants considering young and mature tissues, protoplast isolation, etc. We also address current protocols and novel approaches for improving the in vitro regeneration process, which is an important bottleneck for citrus genetic transformation. This review also explores alternative emerging transformation strategies applied to citrus species such as transient and tissue localized transformation. New breeding technologies, including cisgenesis, intragenesis, and genome editing by clustered regularly interspaced short palindromic repeats (CRISPR), are also discussed. Other relevant aspects comprising new promoters and reporter genes, marker-free systems, and strategies for induction of early flowering, are also addressed. We provided a future perspective on the use of current and new technologies in citrus and its potential impact on regulatory processes.
Collapse
Affiliation(s)
- Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriel Marcelino-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Horacio Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Buenos Aires, Argentina
| |
Collapse
|