1
|
Zhou X, Liu Z, Zhang W, Dai L, Chen T, Lin Z, Pan H, Qi Q, Wei H. Novel human single-domain antibodies exert potent anti-tumor activity by targeting EGF-like repeat epitope of EpCAM. Front Pharmacol 2025; 16:1530268. [PMID: 40017594 PMCID: PMC11865060 DOI: 10.3389/fphar.2025.1530268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction EpCAM (Epithelial cell adhesion molecule) is a key cancer stem cell marker involved in cancer progression, making it an important target for both diagnosis and therapy. Despite efforts using anti-EpCAM monoclonal antibodies (mAbs), their anti-tumor effects have been limited. Single-domain antibodies (sdAbs), in contrast, offer advantages such as efficient tumor penetration and reduced immunogenicity. This study aims to screen and explore novel sdAbs targeting EpCAM for cancer therapy. Methods A critical EGF-like repeat epitope on the EpCAM extracellular domain was selected for screening a human sdAb library via phage display. The selected sdAbs were purified and their anti-cancer activity was validated through specific binding with the EpCAM peptide. The effects of these sdAbs on cell proliferation, migration, invasion, and apoptosis were tested in vitro, and their anti-tumor activity was assessed in a xenograft model. Results Five fully human anti-EpCAM sdAbs were isolated, all of which specifically bound to the EpCAM peptide and showed selective binding to various cancer cell lines, but not to 293T and 3T3 cells. Functional assays demonstrated that these sdAbs significantly inhibited cancer cell proliferation, migration, and invasion, and induced apoptosis. Notably, two sdAbs (aEP3D4 and aEP4G2) exhibited potent anti-tumor effects in vivo, significantly reducing tumor volume and weight in a mouse xenograft model. Discussion This study provides compelling evidence that targeting EpCAM with sdAbs is a promising approach for cancer treatment. The identified anti-EpCAM sdAbs exhibit substantial anti-tumor activity both in vitro and in vivo, suggesting they are strong candidates for future therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhifang Liu
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Weixiong Zhang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Lin Dai
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Tao Chen
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zexiong Lin
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hong Pan
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Henry Wei
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
de Souza CC, Glória JC, da Silva ERD, de Lima Guerra Corado A, de Alcântara KÁG, Cordeiro IB, de Andrade EV, Mariúba LAM. Single-Stranded Variable Fragment Gene Libraries Built for Phage Display: An Updated Review of Design, Selection and Application. J Microbiol Biotechnol 2024; 35:e2407049. [PMID: 39631781 PMCID: PMC11813352 DOI: 10.4014/jmb.2407.07049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 12/07/2024]
Abstract
The development of the phage display technique has brought practicality and speed when selecting high-affinity molecules. It is used to obtain single-chain variable fragments (scFvs) and has revolutionized several branches of research and industry. These are developed from gene libraries that differ in their construction strategies, which causes a diversity of sequences, specificity and binding strength of the projected molecule to its antigen. In this review, we present the recent studies that demonstrate methods and approaches using immune, naïve, synthetic and semi-synthetic libraries to construct and select scFvs. Subsequently, the characteristics of these libraries, the functionality of the scFvs and the cost-benefits of production will be discussed. In addition, we highlight the methodological trends and challenges to be overcome in order to optimize the production and application of these antibody fragments.
Collapse
Affiliation(s)
- Caio Coutinho de Souza
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - Juliane Corrêa Glória
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro (PPGBIO-Interação), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - Eliza Raquel Duarte da Silva
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - André de Lima Guerra Corado
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Universidade Nilton Lins, Manaus, AM, Brazil
| | - Kelson Ávila Graça de Alcântara
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Faculdade Estácio do Amazonas, Manaus, AM, Brazil
| | - Isabelle Bezerra Cordeiro
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Edmar Vaz de Andrade
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro (PPGBIO-Interação), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
3
|
Effer B, Ulloa D, Dappolonnio C, Muñoz F, Iturrieta-González I, Cotes L, Rojas C, Leal P. Construction of a Human Immune Library from Gallbladder Cancer Patients for the Single-Chain Fragment Variable ( scFv) Antibody Selection against Claudin 18.2 via Phage Display. Antibodies (Basel) 2024; 13:20. [PMID: 38534210 DOI: 10.3390/antib13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Gallbladder cancer (GBC) is a very aggressive malignant neoplasm of the biliary tract with a poor prognosis. There are no specific therapies for the treatment of GBC or early diagnosis tools; for this reason, the development of strategies and technologies that facilitate or allow an early diagnosis of GBC continues to be decisive. Phage display is a robust technique used for the production of monoclonal antibodies (mAbs) involving (1) the generation of gene libraries, (2) the screening and selection of isoforms related to an immobilized antigen, and (3) the in vitro maturation of the affinity of the antibody for the antigen. This research aimed to construct a human immune library from PBMCs of GBC patients and the isolation of scFv-phage clones with specificity against the larger extracellular loop belonging to claudin 18.2, which is an important biomarker overexpressed in GBC as well as gastric cancer. The immune-library-denominated GALLBLA1 was constructed from seven GBC patients and has a diversity of 6.12 × 1010pfu mL-1. After three rounds of panning, we were able to identify clones with specificity against claudin 18.2. GALLBLA1 can contribute to the selection, isolation, and recombinant production of new human mAbs candidates for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabel Iturrieta-González
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Preclinic Science, Medicine Faculty, Universidad de La Frontera, Temuco 4810296, Chile
| | - Loraine Cotes
- Carrera de Ingeniería Pesquera, Facultad de Ingeniería, Universidad del Magdalena, Carrera 32 No. 2208 Sector San Pedro Alejandrino, Santa Marta 470001, Colombia
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos, Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
4
|
Qin Y, Jin J, Zhang J, Wang H, Liu L, Zhang Y, Ling S, Hu J, Li N, Wang J, Lv C, Yang X. A fully human monoclonal antibody targeting Semaphorin 5A alleviates the progression of rheumatoid arthritis. Biomed Pharmacother 2023; 168:115666. [PMID: 37832409 DOI: 10.1016/j.biopha.2023.115666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is the most common chronic autoimmune disease worldwide. Although progress has been made in RA treatment in recent decades, remission cannot be effectively achieved for a considerable proportion of RA patients. Thus, novel potential targets for therapeutic strategies are needed. Semaphorin 5A (SEMA5A) plays a pivotal role in RA progression by facilitating pannus formation, and it is a promising therapeutic target. In this study, we sought to develop an antibody treatment strategy targeting SEMA5A and evaluate its therapeutic effect using a collagen-induced arthritis (CIA) model. We generated SYD12-12, a fully human SEMA5A blocking antibody, through phage display technology. SYD12-12 intervention effectively inhibited angiogenesis and aggressive phenotypes of RA synoviocytes in vitro and dose-dependently inhibited synovial hyperplasia, pannus formation, bone destruction in CIA mice. Notably, SYD12-12 also improved the Treg/Th17 imbalance in CIA mice. We confirmed through immunofluorescence and molecular docking that SYD12-12 integrated with the unique TSP-1 domain of SEMA5A. In conclusion, we developed and characterized a fully human SEMA5A-blocking antibody for the first time. SYD12-12 effectively alleviated disease progression in CIA mice by inhibiting pannus formation and improving the Treg/Th17 imbalance, demonstrating its potential for the RA treatment.
Collapse
Affiliation(s)
- Yang Qin
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayi Jin
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiani Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanwen Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jinzhu Hu
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nuan Li
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianguang Wang
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Chen Lv
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Lahimchi MR, Maroufi F, Maali A. Induced Pluripotent Stem Cell-Derived Chimeric Antigen Receptor T Cells: The Intersection of Stem Cells and Immunotherapy. Cell Reprogram 2023; 25:195-211. [PMID: 37782910 DOI: 10.1089/cell.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising cell-based immunotherapy applicable to various cancers. High cost of production, immune rejection, heterogeneity of cell product, limited cell source, limited expandability, and relatively long production time have created the need to achieve a universal allogeneic CAR-T cell product for "off-the-shelf" application. Since the innovation of induced pluripotent stem cells (iPSCs) by Yamanaka et al., extensive efforts have been made to prepare an unlimited cell source for regenerative medicine, that is, immunotherapy. In the autologous grafting approach, iPSCs prepare the desired cell source for generating autologous CAR-T cells through more accessible and available sources. In addition, generating iPSC-derived CAR-T cells is a promising approach to achieving a suitable source for producing an allogeneic CAR-T cell product. In brief, the first step is reprogramming somatic cells (accessible from peripheral blood, skin, etc.) to iPSCs. In the next step, CAR expression and T cell lineage differentiation should be applied in different arrangements. In addition, in an allogeneic manner, human leukocyte antigen/T cell receptor (TCR) deficiency should be applied in iPSC colonies. The allogeneic iPSC-derived CAR-T cell experiments showed that simultaneous performance of HLA/TCR deficiency, CAR expression, and T cell lineage differentiation could bring the production to the highest efficacy in generating allogeneic iPSC-derived CAR-T cells.
Collapse
Affiliation(s)
| | - Faezeh Maroufi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
6
|
Yang Z, Wang C, Liu J, Xiao L, Guo L, Xie J. In Silico-Ex Vitro Iteration Strategy for Affinity Maturation of Anti-Ricin Peptides and the SPR Biosensing Application. Toxins (Basel) 2023; 15:490. [PMID: 37624247 PMCID: PMC10467137 DOI: 10.3390/toxins15080490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The highly toxic plant toxin ricin is one of the most known threatening toxins. Accurate and sensitive biosensing methods for the first emergency response and intoxication treatment, are always pursued in the biodefense field. Screening affinity molecules is the fundamental mainstream approach for developing biosensing methods. Compared with common affinity molecules such as antibodies and oligonucleotide aptamers, peptides have great potential as biosensing modules with more accessible chemical synthesis capability and better batch-to-batch stability than antibodies, more abundant interaction sites, and robust sensing performance towards complex environments. However, anti-ricin peptides are so scant to be screened and discovered, and an advanced screening strategy is the utmost to tackle this issue. Here, we present a new in silico-in vitro iteration-assisted affinity maturation strategy of anti-ricin peptides. We first obtained affinity peptides targeting ricin through phage display with five panning rounds of "coating-elution-amplification-enrichment" procedures. The binding affinity and kinetic parameters characterized by surface plasmon resonance (SPR) showed that we had obtained four peptides owning dissociation constants (KD) around 2~35 μM, in which peptide PD-2-R5 has the lower KD of 4.7 μM and higher stable posture to interact with ricin. We then constructed a new strategy for affinity maturity, composing two rounds of in silico-in vitro iterations. Firstly, towards the single-site alanine scanning mutation peptide library, the molecular docking predictions match the SPR evaluation results well, laying a solid foundation for designing a full saturation mutated peptide library. Secondly, plenty of in silico saturation mutation prediction results guided the discovery of peptides PD2-R5-T3 and PD-2-R5-T4 with higher affinity from only a limited number of SPR evaluation experiments. Both evolved peptides had increased affinity by about 5~20 times, i.e., KD of 230 nM and 900 nM. A primary cellular toxicity assay indicated that both peptides could protect cells against ricin damage. We further established an SPR assay based on PD-2-R5-T3 and PD-2-R5-T4 elongated with an antifouling peptide linkage and achieved good linearity with a sensitivity of 1 nM and 0.5 nM, respectively. We hope this new affinity-mature strategy will find its favorable position in relevant peptide evolution, biosensing, and medical countermeasures for biotoxins to protect society's security and human life better.
Collapse
Affiliation(s)
- Zhifang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Chuang Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
- Key Laboratory of Ethnomedicine Ministry of Education (Minzu University of China), School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jia Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
- College of Pharmacy, Hebei Science and Technology University, Shijiazhuang 050018, China
| | - Lan Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
- Key Laboratory of Ethnomedicine Ministry of Education (Minzu University of China), School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
7
|
Silva-Pilipich N, Covo-Vergara Á, Vanrell L, Smerdou C. Checkpoint blockade meets gene therapy: Opportunities to improve response and reduce toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:43-86. [PMID: 37541727 DOI: 10.1016/bs.ircmb.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) based on monoclonal antibodies represent a breakthrough for the treatment of cancer. However, their efficacy varies among tumor types and patients, and they can lead to adverse effects due to on-target/off-tumor activity, since they are administered systemically at high doses. An alternative and attractive approach for the delivery of ICIs is the use of gene therapy vectors able to express them in vivo. This review focuses on the most recent studies using viral vectors able to express ICIs locally or systemically in preclinical models of cancer. These vectors include non-replicating viruses, oncolytic viruses able to propagate specifically in tumor cells and destroy them, and self-amplifying RNA vectors, armed with different formats of antibodies against immune checkpoints. Non-replicating vectors usually lead to long-term ICI expression, potentially eliminating the need for repeated administration. Vectors with replication capacity, although they have a shorter window of expression, can induce inflammation which enhances the antitumor effect. Finally, these engineered vectors can be used in combination with other immunostimulatory molecules or with CAR-T cells, further boosting the antitumor immune responses.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain.
| | - Ángela Covo-Vergara
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain
| | - Lucía Vanrell
- Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay; Nanogrow Biotech, Montevideo, Uruguay
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain.
| |
Collapse
|
8
|
Awad RM, Breckpot K. Novel technologies for applying immune checkpoint blockers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:1-101. [PMID: 38225100 DOI: 10.1016/bs.ircmb.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Cancer cells develop several ways to subdue the immune system among others via upregulation of inhibitory immune checkpoint (ICP) proteins. These ICPs paralyze immune effector cells and thereby enable unfettered tumor growth. Monoclonal antibodies (mAbs) that block ICPs can prevent immune exhaustion. Due to their outstanding effects, mAbs revolutionized the field of cancer immunotherapy. However, current ICP therapy regimens suffer from issues related to systemic administration of mAbs, including the onset of immune related adverse events, poor pharmacokinetics, limited tumor accessibility and immunogenicity. These drawbacks and new insights on spatiality prompted the exploration of novel administration routes for mAbs for instance peritumoral delivery. Moreover, novel ICP drug classes that are adept to novel delivery technologies were developed to circumvent the drawbacks of mAbs. We therefore review the state-of-the-art and novel delivery strategies of ICP drugs.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
9
|
Dora D, Bokhari SMZ, Aloss K, Takacs P, Desnoix JZ, Szklenárik G, Hurley PD, Lohinai Z. Implication of the Gut Microbiome and Microbial-Derived Metabolites in Immune-Related Adverse Events: Emergence of Novel Biomarkers for Cancer Immunotherapy. Int J Mol Sci 2023; 24:ijms24032769. [PMID: 36769093 PMCID: PMC9916922 DOI: 10.3390/ijms24032769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed how we think about tumor management. Combinations of anti-programmed death ligand-1 (PD-L1) immunotherapy have become the standard of care in many advanced-stage cancers, including as a first-line therapy. Aside from improved anti-tumor immunity, the mechanism of action of immune checkpoint inhibitors (ICIs) exposes a new toxicity profile known as immune-related adverse effects (irAEs). This novel toxicity can damage any organ, but the skin, digestive and endocrine systems are the most frequently afflicted. Most ICI-attributed toxicity symptoms are mild, but some are severe and necessitate multidisciplinary side effect management. Obtaining knowledge on the various forms of immune-related toxicities and swiftly changing treatment techniques to lower the probability of experiencing severe irAEs has become a priority in oncological care. In recent years, there has been a growing understanding of an intriguing link between the gut microbiome and ICI outcomes. Multiple studies have demonstrated a connection between microbial metagenomic and metatranscriptomic patterns and ICI efficacy in malignant melanoma, lung and colorectal cancer. The immunomodulatory effect of the gut microbiome can have a real effect on the biological background of irAEs as well. Furthermore, specific microbial signatures and metabolites might be associated with the onset and severity of toxicity symptoms. By identifying these biological factors, novel biomarkers can be used in clinical practice to predict and manage potential irAEs. This comprehensive review aims to summarize the clinical aspects and biological background of ICI-related irAEs and their potential association with the gut microbiome and metabolome. We aim to explore the current state of knowledge on the most important and reliable irAE-related biomarkers of microbial origin and discuss the intriguing connection between ICI efficacy and toxicity.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| | | | - Kenan Aloss
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | - Peter Takacs
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - Juliane Zsuzsanna Desnoix
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - György Szklenárik
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | | | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
- National Korányi Institute of Pulmonology, Pihenő út 1-3, 1121 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| |
Collapse
|
10
|
Kalim M, Ali H, Rehman AU, Lu Y, Zhan J. Bioengineering and computational analysis of programmed cell death ligand-1 monoclonal antibody. Front Immunol 2022; 13:1012499. [PMID: 36341340 PMCID: PMC9633666 DOI: 10.3389/fimmu.2022.1012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
The trans-membrane proteins of the B7 family programmed cell death ligand-1 (PD-L1) and programmed death-1 (PD-1) play important roles in inhibiting immune responses and enhancing self-tolerance via T-cell modulation. Several therapeutic antibodies are used to promote T-cell proliferation by preventing interactions between PD-1/PD-L1. Recombinant technology appears to be quite useful in the production of such potent antibodies. In this study, we constructed recombinant molecules by cloning variable regions of the PD-L1 molecule into pMH3 vectors and transferring them into mammalian cell lines for expression. G418 supplementation was used to screen the recombinant clones, which were then maintained on serum-free medium. The full-length antibody was isolated and purified from the medium supernatant at a concentration of 0.5-0.8 mg/ml. Antibody binding affinity was investigated using ELISA and immunofluorescence methods. The protein-protein interactions (PPI) were determined using a docking approach. The SWISS model was utilized for homology modeling, while ZDOCK, Chimera, and PyMOL were used to validate 3D models. The Ramachandran plots were constructed using the SWISS model, which revealed that high-quality structures had a value of more than 90%. Current technologies allow for the accurate determination of antigen-antibody interactions.
Collapse
Affiliation(s)
- Muhammad Kalim
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Ashfaq Ur Rehman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Yong Lu
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang, Nanjing, China
| | - Jinbiao Zhan
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|