1
|
Papić B, Žvokelj L, Pislak Ocepek M, Hočevar B, Kozar M, Rus R, Zajc U, Kušar D. The Diagnostic Value of qPCR Quantification of Paenibacillus larvae in Hive Debris and Adult Bees for Predicting the Onset of American Foulbrood. Vet Sci 2024; 11:442. [PMID: 39330821 PMCID: PMC11436083 DOI: 10.3390/vetsci11090442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
American foulbrood (AFB) is a serious infectious disease of honeybees (Apis mellifera) caused by Paenibacillus larvae. Increased P. larvae count in hive-related material is associated with an increased risk of AFB. Here, we quantified P. larvae cells in 106 adult bee and 97 hive debris samples using quantitative PCR (qPCR); 66/106 adult bee and 66/97 hive debris samples were collected simultaneously from the same bee colony (paired-sample design). The corresponding bee colonies were also examined for the presence of AFB clinical signs. A binary logistic regression model to distinguish between AFB-affected and unaffected honeybee colonies showed a strong diagnostic accuracy of both sample types for predicting the onset of AFB based on P. larvae counts determined by qPCR. The colonies with a P. larvae count greater than 4.5 log cells/adult bee or 7.3 log cells/mL hive debris had a 50% probability of being clinically affected and were categorized as high-risk. The AFB-unaffected colonies had significantly lower P. larvae counts than the AFB-affected colonies, but the latter did not differ significantly in P. larvae counts in relation to the severity of clinical signs. Both bee-related sample types had a high diagnostic value for predicting disease outcome based on P. larvae counts. These results improve the understanding of the relationship between P. larvae counts and AFB occurrence, which is essential for early detection of high-risk colonies.
Collapse
Affiliation(s)
- Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Lucija Žvokelj
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Metka Pislak Ocepek
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Barbara Hočevar
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Monika Kozar
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Rene Rus
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Urška Zajc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Sun H, Li H, Zhang X, Liu Y, Chen H, Zheng L, Zhai Y, Zheng H. The honeybee gut resistome and its role in antibiotic resistance dissemination. Integr Zool 2023; 18:1014-1026. [PMID: 36892101 DOI: 10.1111/1749-4877.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator; the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Huihui Sun
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| |
Collapse
|
3
|
Matiašovic J, Bzdil J, Papežíková I, Čejková D, Vasina E, Bizos J, Navrátil S, Šedivá M, Klaudiny J, Pikula J. Genomic analysis of Paenibacillus larvae isolates from the Czech Republic and the neighbouring regions of Slovakia. Res Vet Sci 2023; 158:34-40. [PMID: 36913910 DOI: 10.1016/j.rvsc.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/16/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023]
Abstract
Paenibacillus larvae is the causative agent of American foulbrood (AFB), a devastating disease of honeybee larvae. In the Czech Republic, two large infested regions were recognised. This study aimed to analyse P. larvae strains occurring in the Czech Republic in the years 2016-2017 and to characterise the genetic structure of their population with the use of Enterobacterial Repetitive Intergenic Consensus genotyping (ERIC), multilocus sequence typing (MLST) and whole genome sequence (WGS) analysis. The results were complemented by the analysis of isolates collected in the year 2018 in areas of Slovakia located near the Czechia-Slovakia border. ERIC genotyping revealed that 78.9% of tested isolates belonged to the ERIC II genotype and 21.1% to ERIC I genotype. MLST showed six sequence types with ST10 and ST11 being the most frequent among isolates. Within six isolates we found discrepancies in correlations between MLST and ERIC genotypes. The use of MLST and WGS analysis of isolates revealed that each of the large infested geographic regions had its own dominating P. larvae strains. We assume that these strains represented primary sources of infection in the affected areas. In addition, the sporadic presence of strains identified by core genome analysis as genetically related was unveiled in geographically distant regions suggesting possible human-mediated transmission of AFB.
Collapse
Affiliation(s)
- Ján Matiašovic
- Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic.
| | - Jaroslav Bzdil
- Ptácy s.r.o., Valašská Bystřice 194, 756 27 Valašská Bystřice, Czech Republic
| | - Ivana Papežíková
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Darina Čejková
- Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; Department of Biomedical Engineering, Brno University of Technology, Technická 12, 616 00 Brno, Czech Republic
| | - Evgeniya Vasina
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jiří Bizos
- Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic
| | - Stanislav Navrátil
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Mária Šedivá
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Jaroslav Klaudiny
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Jiří Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
4
|
Dickel F, Bos NMP, Hughes H, Martín-Hernández R, Higes M, Kleiser A, Freitak D. The oral vaccination with Paenibacillus larvae bacterin can decrease susceptibility to American Foulbrood infection in honey bees—A safety and efficacy study. Front Vet Sci 2022; 9:946237. [PMID: 36325099 PMCID: PMC9618583 DOI: 10.3389/fvets.2022.946237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Pollination services to increase crop production are becoming more and more important, as we are facing both climate change and a growing world population. Both are predicted to impact food security worldwide. High-density, commercial beekeeping has become a key link in the food supply chain, and diseases have become a central issue in hive losses around the world. American Foulbrood (AFB) disease is a highly contagious bacterial brood disease in honey bees (Apis mellifera), leading to hive losses worldwide. The causative agent is the Gram+ bacterium Paenibacillus larvae, which is able to infect honey bee larvae during the first 3 days of their lives. It can be found in hives around the world with viable spores for decades. Antibiotics are largely ineffective in treating the disease as they are only efficient against the vegetative state. Once a hive shows the clinical manifestation of the disease, the only effective way to eradicate it and prevent the spread of the disease is by burning the hive, the equipment, and the colony. Because of its virulent nature and detrimental effects on honey bee colonies, AFB is classified as a notifiable disease worldwide. Effective, safe, and sustainable methods are needed to ensure the wellbeing of honey bee colonies. Even though insects lack antibodies, which are the main requisites for trans-generational immune priming (TGIP), they can prime their offspring against persisting pathogens. Here, we demonstrate an increased survival of infected honey bee larvae after their queen was vaccinated, compared to offspring of control queens (placebo vaccinated). These results indicate that TGIP in insects can be used to majorly enhance colony health, protect commercial pollinators from deadly diseases, and reduce high financial and material losses to beekeepers.
Collapse
Affiliation(s)
- Franziska Dickel
- Institute of Biology, Karl-Franzens University, Graz, Austria
- Dalan Animal Health, Inc., Ojai, CA, United States
| | | | - Huw Hughes
- Echo Veterinary Consulting, Saint-Hippolyte, QC, Canada
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | | | - Dalial Freitak
- Institute of Biology, Karl-Franzens University, Graz, Austria
- Dalan Animal Health, Inc., Ojai, CA, United States
- *Correspondence: Dalial Freitak
| |
Collapse
|
5
|
Moharrami M, Mojgani N, Bagheri M, Toutiaee S. Role of Honey Bee Gut Microbiota in the Control of American Foulbrood and European Foulbrood Diseases. ARCHIVES OF RAZI INSTITUTE 2022; 77:1331-1339. [PMID: 36883164 PMCID: PMC9985789 DOI: 10.22092/ari.2022.358073.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 03/09/2023]
Abstract
American foulbrood (AFB) and European foulbrood (EFB) are the two most important honey bee brood diseases which impose heavy economic losses to the apiculture industry worldwide by reducing bee population and honey production. Treatment with antibiotics has led to the emergence of antibiotic-resistant strains, calling for alternative safe treatment procedures that could control these diseases. Honey bee gut microbiota is known to affect the overall health of honey bees by enhancing their resistance to a number of diseases via modulation of the immune response and production of different antimicrobial metabolites. The majority of these gut resident bacteria are identified as probiotic bacteria and secure the health of these tiny insects. In the present review, we highlighted the significance of the honey bee gut microbial community and their probiotic potency for the prevention of AFB and EFB diseases in honey bees.
Collapse
Affiliation(s)
- M Moharrami
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO) Karaj, 31976-19751, Iran
| | - N Mojgani
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO) Karaj, 31976-19751, Iran
| | - M Bagheri
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO) Karaj, 31976-19751, Iran
| | - S Toutiaee
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO) Karaj, 31976-19751, Iran.,Department of Microbiology, Islamic Azad University, Karaj, Iran
| |
Collapse
|
6
|
Novel TaqMan PCR Assay for the Quantification of Paenibacillus larvae Spores in Bee-Related Samples. INSECTS 2021; 12:insects12111034. [PMID: 34821836 PMCID: PMC8621733 DOI: 10.3390/insects12111034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary American foulbrood (AFB) is the most severe bacterial disease of honeybees, caused by Paenibacillus larvae. Larvae become infected by ingesting food contaminated with P. larvae spores, which are extremely resistant and can remain infectious for decades. Burning affected colonies is widely used to prevent further spread of the disease. The presence of P. larvae spores in bee-related samples is associated with an increased risk of developing clinical symptoms, and spore counts can be used for early detection of at-risk colonies, which should then undergo thorough clinical examination. Because quantification of P. larvae spores by plate counting is time-consuming and unreliable, due to poor and inconsistent germination, molecular quantification is more suitable. To overcome the limitations of available quantification methods, we developed a quantitative PCR (qPCR) assay for reliable quantification of P. larvae that also performs well at low spore counts. The assay was validated for honey and hive debris samples but can be extended to other sample types. Spore counts in AFB-positive colonies were significantly higher than those in asymptomatic colonies, both for honey and hive debris samples. By comparing plate and qPCR counts, the germination rate of P. larvae spores was found to be low and inconsistent. Abstract Paenibacillus larvae is the causative agent of American foulbrood (AFB), a devastating disease of honeybees. P. larvae spore counts in bee-related samples correlate with the presence of AFB symptoms and may, therefore, be used to identify at-risk colonies. Here, we constructed a TaqMan-based real-time PCR (qPCR) assay targeting a single-copy chromosomal metalloproteinase gene for reliable quantification of P. larvae. The assay was calibrated using digital PCR (dPCR) to allow absolute quantification of P. larvae spores in honey and hive debris samples. The limits of detection and quantification were 8 and 58 spores/g for honey and 188 and 707 spores/mL for hive debris, respectively. To assess the association between AFB clinical symptoms and spore counts, we quantified spores in honey and hive debris samples originating from honeybee colonies with known severity of clinical symptoms. Spore counts in AFB-positive colonies were significantly higher than those in asymptomatic colonies but did not differ significantly with regard to the severity of clinical symptoms. For honey, the average spore germination rate was 0.52% (range = 0.04–6.05%), indicating poor and inconsistent in vitro germination. The newly developed qPCR assay allows reliable detection and quantification of P. larvae in honey and hive debris samples but can also be extended to other sample types.
Collapse
|
7
|
Jończyk-Matysiak E, Popiela E, Owczarek B, Hodyra-Stefaniak K, Świtała-Jeleń K, Łodej N, Kula D, Neuberg J, Migdał P, Bagińska N, Orwat F, Weber-Dąbrowska B, Roman A, Górski A. Phages in Therapy and Prophylaxis of American Foulbrood - Recent Implications From Practical Applications. Front Microbiol 2020; 11:1913. [PMID: 32849478 PMCID: PMC7432437 DOI: 10.3389/fmicb.2020.01913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
American foulbrood is one of the most serious and yet unsolved problems of beekeeping around the world, because it causes a disease leading to the weakening of the vitality of honey bee populations and huge economic losses both in agriculture and horticulture. The etiological agent of this dangerous disease is an extremely pathogenic spore-forming bacterium, Paenibacillus larvae, which makes treatment very difficult. What is more, the use of antibiotics in the European Union is forbidden due to restrictions related to the prevention of the presence of antibiotic residues in honey, as well as the global problem of spreading antibiotic resistance in case of bacterial strains. The only available solution is burning of entire bee colonies, which results in large economic losses. Therefore, bacteriophages and their lytic enzymes can be a real effective alternative in the treatment and prevention of this Apis mellifera disease. In this review, we summarize phage characteristics that make them a potentially useful tool in the fight against American foulbrood. In addition, we gathered data regarding phage application that have been described so far, and attempted to show practical implications and possible limitations of their usage.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ewa Popiela
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Barbara Owczarek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Norbert Łodej
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dominika Kula
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joanna Neuberg
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Filip Orwat
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Antimicrobial Activity against Paenibacillus larvae and Functional Properties of Lactiplantibacillus plantarum Strains: Potential Benefits for Honeybee Health. Antibiotics (Basel) 2020; 9:antibiotics9080442. [PMID: 32722196 PMCID: PMC7460353 DOI: 10.3390/antibiotics9080442] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023] Open
Abstract
Paenibacillus larvae is the causative agent of American foulbrood (AFB), a severe bacterial disease that affects larvae of honeybees. The present study evaluated, in vitro, antimicrobial activity of sixty-one Lactiplantibacillus plantarum strains, against P. larvae ATCC 9545. Five strains (P8, P25, P86, P95 and P100) that showed the greatest antagonism against P. larvae ATCC 9545 were selected for further physiological and biochemical characterizations. In particular, the hydrophobicity, auto-aggregation, exopolysaccharides production, osmotic tolerance, enzymatic activity and carbohydrate assimilation patterns were evaluated. The five L. plantarum selected strains showed suitable physical and biochemical properties for their use as probiotics in the honeybee diet. The selection and availability of new selected bacteria with good functional characteristics and with antagonistic activity against P. larvae opens up interesting perspectives for new biocontrol strategies of diseases such as AFB.
Collapse
|
9
|
Stephan JG, de Miranda JR, Forsgren E. Correction to: American foulbrood in a honeybee colony: spore-symptom relationship and feedbacks between disease and colony development. BMC Ecol 2020; 20:16. [PMID: 32293396 PMCID: PMC7087355 DOI: 10.1186/s12898-020-00285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Jörg G Stephan
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden. .,Swedish Species Information Centre, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| |
Collapse
|
10
|
Stephan JG, de Miranda JR, Forsgren E. American foulbrood in a honeybee colony: spore-symptom relationship and feedbacks. BMC Ecol 2020; 20:15. [PMID: 32143610 PMCID: PMC7060557 DOI: 10.1186/s12898-020-00283-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/25/2020] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The most severe bacterial disease of honeybees is American foulbrood (AFB). The epidemiology of AFB is driven by the extreme spore resilience, the difficulty of bees to remove these spores, and the considerable incidence of undetected spore-producing colonies. The honeybee collective defence mechanisms and their feedback on colony development, which involves a division of labour at multiple levels of colony organization, are difficult to model. To better predict disease outbreaks we need to understand the feedback between colony development and disease progression within the colony. We therefore developed Bayesian models with data from forty AFB-diseased colonies monitored over an entire foraging season to (i) investigate the relationship between spore production and symptoms, (ii) disentangle the feedback loops between AFB epidemiology and natural colony development, and (iii) discuss whether larger insect societies promote or limit within-colony disease transmission. RESULTS Rather than identifying a fixed spore count threshold for clinical symptoms, we estimated the probabilities around the relationship between spore counts and symptoms, taking into account modulators such as brood amount/number of bees and time post infection. We identified a decrease over time in the bees-to-brood ratio related to disease development, which should ultimately induce colony collapse. Lastly, two contrasting theories predict that larger colonies could promote either higher (classical epidemiological SIR-model) or lower (increasing spatial nest segregation and more effective pathogen removal) disease prevalence. CONCLUSIONS AFB followed the predictions of the SIR-model, partly because disease prevalence and brood removal are decoupled, with worker bees acting more as disease vectors, infecting new brood, than as agents of social immunity, by removing infected brood. We therefore established a direct link between disease prevalence and social group size for a eusocial insect. We furthermore provide a probabilistic description of the relationship between AFB spore counts and symptoms, and how disease development and colony strength over a season modulate this relationship. These results help to better understand disease development within honeybee colonies, provide important estimates for further epidemiological modelling, and gained important insights into the optimal sampling strategy for practical beekeeping and honeybee research.
Collapse
Affiliation(s)
- Jörg G Stephan
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| |
Collapse
|