1
|
Vainer N, Rotbain Curovic V, Niemann CU, Slager SL, Rotbain EC. Understanding the interplay between chronic lymphocytic leukemia and type 2 diabetes. Expert Rev Hematol 2024; 17:617-629. [PMID: 39041465 DOI: 10.1080/17474086.2024.2383417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Comorbidities play an important role in the management of chronic lymphocytic leukemia (CLL) and may influence survival and treatment outcomes. Considering the aging general population and increasing incidence of type 2 diabetes (T2D), a comprehensive understanding of the interplay between CLL and T2D is essential for optimizing care and outcomes. AREAS COVERED We present current knowledge on co-existing CLL and T2D including prevalence, shared etiology and risk factors and how the conditions and treatment hereof may influence the outcome of one another. A literature search was performed using PubMed with the cutoff date on 1 February 2024. EXPERT OPINION The increased mortality observed in persons with CLL who have co-existing T2D is partially ascribed to infections, prompting physicians managing individuals with both conditions to consider closer monitoring during instances of infection and individualized prophylaxis. People with CLL and T2D should be managed for CLL in accordance with the international working group on CLL criteria, and we recommend that physicians exercise particular care not to delay treatment for these individuals. Multidisciplinary approaches with involvement of several specialties may be required for optimal supportive care of co-occurring T2D and CLL.
Collapse
Affiliation(s)
- Noomi Vainer
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Hematology Group, Danish Cancer Institute, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Carsten Utoft Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Susan L Slager
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Emelie Curovic Rotbain
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Hematology Group, Danish Cancer Institute, Copenhagen, Denmark
| |
Collapse
|
2
|
Kutpruek S, Suksri K, Maneethorn P, Semprasert N, Yenchitsomanus PT, Kooptiwut S. Imatinib prevents dexamethasone-induced pancreatic β-cell apoptosis via decreased TRAIL and DR5. J Cell Biochem 2023; 124:1309-1323. [PMID: 37555250 DOI: 10.1002/jcb.30450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Prolonged administration of dexamethasone, a potent anti-inflammatory drug, can lead to steroid-induced diabetes. Imatinib, a medication commonly prescribed for chronic myeloid leukemia (CML), has been shown to improve diabetes in CML patients. Our recent study demonstrated that dexamethasone induces pancreatic β-cell apoptosis by upregulating the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 5 (DR5). We hypothesized that imatinib may protect against dexamethasone-induced pancreatic β-cell apoptosis by reducing the expression of TRAIL and DR5, thereby favorably modulating downstream effectors in apoptotic pathways. We test this hypothesis by assessing the effects of imatinib on dexamethasone-induced apoptosis in rat insulinoma cell line cells. As anticipated, dexamethasone treatment led to increased TRAIL and DR5 expression, as well as an elevation in superoxide production. Conversely, expression of the TRAIL decoy receptor (DcR1) was decreased. Moreover, key effectors in the extrinsic and intrinsic apoptosis pathways, such as B-cell lymphoma 2 (BCL-2) associated X (BAX), nuclear factor kappa B (NF-κb), P73, caspase 8, and caspase 9, were upregulated, while the antiapoptotic protein BCL-2 was downregulated. Interestingly and importantly, imatinib at a concentration of 10 µM reversed the effect of dexamethasone on TRAIL, DR5, DcR1, superoxide production, BAX, BCL-2, NF-κB, P73, caspase 3, caspase 8, and caspase 9. Similar effects of imatinib on dexamethasone-induced TRAIL and DR5 expression were also observed in isolated mouse islets. Taken together, our findings suggest that imatinib protects against dexamethasone-induced pancreatic β-cell apoptosis by reducing TRAIL and DR5 expression and modulating downstream effectors in the extrinsic and intrinsic apoptosis pathways.
Collapse
Affiliation(s)
- Suchanoot Kutpruek
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanchana Suksri
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Petcharee Maneethorn
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Namoiy Semprasert
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Research Department, Division of Molecular Medicine, Mahidol University, Bangkok, Thailand
| | - Suwattanee Kooptiwut
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Janssen L, Hopman MTE, Swaans GJA, Allard NAE, Boss M, Lobeek D, Gotthardt M, Schirris TJJ, Blijlevens NMA, Timmers S. Impact of tyrosine kinase inhibitors on glucose control and insulin regulation in patients with chronic myeloid leukemia. Am J Physiol Endocrinol Metab 2023; 324:E209-E216. [PMID: 36696600 DOI: 10.1152/ajpendo.00163.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Treatment with tyrosine kinase inhibitors (TKIs), especially nilotinib, often results in hyperglycemia, which may further increase cardiovascular disease risk in patients with chronic myeloid leukemia (CML). The mechanism underlying the TKI-induced glucose dysregulation is not clear. TKIs are suggested to affect insulin secretion but also insulin sensitivity of peripheral tissue has been proposed to play a role in the pathogenesis of TKI-induced hyperglycemia. Here, we aimed to assess whether skeletal muscle glucose uptake and insulin responses are altered in nondiabetic patients with CML receiving TKI treatment. After a glycogen-depleted exercise bout, an intravenous glucose bolus (0.3 g/kg body weight) was administered to monitor 2-h glucose tolerance and insulin response in 14 patients with CML receiving nilotinib, 14 patients with CML receiving imatinib, and 14 non-CML age- and gender-matched controls. A dynamic [18F]-FDG PET scan during a hyperinsulinemic-euglycemic clamp was performed in a subgroup of 12 male patients with CML to assess m. quadriceps glucose uptake. We showed that patients with CML treated with nilotinib have an increased insulin response to intravenous glucose administration after muscle glycogen-depleted exercise. Despite the increased insulin response to glucose administration in patients with CML receiving nilotinib, glucose disappearance rates were significantly slower in nilotinib-treated patients when compared with controls in the first 15 min after glucose administration. Although [18F]-FDG uptake in m. quadriceps was not different, patients receiving nilotinib showed a trend toward decreased glucose infusion rates during euglycemic clamping when compared with patients receiving imatinib. Together, these findings indicate disturbed skeletal muscle glucose handling in patients with CML receiving nilotinib therapy.NEW & NOTEWORTHY In this study, we have shown that non-diabetic patients with CML receiving nilotinib therapy show early signs of disturbed skeletal muscle glucose handling, which was not observed in imatinib-treated patients. These observations in nilotinib users may reflect decreased muscle insulin sensitivity, which could serve as a potential target to counteract glycemic dysregulation, and is of clinical importance since these patients have an increased cardiovascular disease risk.
Collapse
Affiliation(s)
- Lando Janssen
- Radboud Institute for Health Sciences, Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria T E Hopman
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Greetje J A Swaans
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Neeltje A E Allard
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marti Boss
- Radboud Institute for Health Sciences, Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daphne Lobeek
- Radboud Institute for Health Sciences, Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Radboud Institute for Health Sciences, Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Radboud Institute for Molecular Life Sciences, Department of Pharmacology and Toxicology, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicole M A Blijlevens
- Radboud Institute for Health Sciences, Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Silvie Timmers
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
4
|
Markovits N, Kurnik D, Friedrich C, Gueta I, Halkin H, David S, Lomnicky Y, Topol Y, Tirosh A, Loebstein R. Effects of imatinib on glycemic and lipid profiles: a retrospective cohort study. Leuk Lymphoma 2022; 63:2224-2232. [DOI: 10.1080/10428194.2022.2068003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Noa Markovits
- Institute of Clinical Pharmacology, Sheba Medical Center, Tel Hashomer & Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pharmacy and Clinical Pharmacology, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Daniel Kurnik
- Clinical Pharmacology and Toxicology Section, Rambam Health Care Campus & Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Carmel Friedrich
- Department of Internal Medicine T, Sheba Medical Center, Tel Hashomer, Israel
| | - Itai Gueta
- Institute of Clinical Pharmacology, Sheba Medical Center, Tel Hashomer & Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pharmacy and Clinical Pharmacology, Maccabi Healthcare Services, Tel Aviv, Israel
- Department of Internal Medicine A, Sheba Medical Center, Tel Hashomer, Israel
| | - Hillel Halkin
- Institute of Clinical Pharmacology, Sheba Medical Center, Tel Hashomer & Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pharmacy and Clinical Pharmacology, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Sara David
- Department of Pharmacy and Clinical Pharmacology, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Yossi Lomnicky
- Department of Pharmacy and Clinical Pharmacology, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Yael Topol
- Department of Pharmacy and Clinical Pharmacology, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Amir Tirosh
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer & Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Loebstein
- Institute of Clinical Pharmacology, Sheba Medical Center, Tel Hashomer & Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pharmacy and Clinical Pharmacology, Maccabi Healthcare Services, Tel Aviv, Israel
| |
Collapse
|
5
|
Althubiti M. Tyrosine kinase targeting: A potential therapeutic strategy for diabetes. SAUDI JOURNAL OF MEDICINE AND MEDICAL SCIENCES 2022; 10:183-191. [PMID: 36247049 PMCID: PMC9555044 DOI: 10.4103/sjmms.sjmms_492_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/06/2021] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been studied extensively in cancer research, ultimately resulting in the approval of many drugs for cancer therapy. Recent evidence from reported clinical cases and experimental studies have suggested that some of these drugs have a potential role in diabetes treatment. These TKIs include imatinib, sunitinib, dasatinib, erlotinib, nilotinib, neratinib, and ibrutinib. As a result of promising findings, imatinib has been used in a phase II clinical trial. In this review, studies that used TKIs in the treatment of both types of diabetes are critically discussed. In addition, the different molecular mechanisms of action of these drugs in diabetes models are also highlighted to understand their antidiabetic mode of action.
Collapse
|
6
|
Welsh N. Are off-target effects of imatinib the key to improving beta-cell function in diabetes? Ups J Med Sci 2022; 127:8841. [PMID: 36187072 PMCID: PMC9487420 DOI: 10.48101/ujms.v127.8841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
The small tyrosine kinase (TK) inhibitor imatinib mesylate (Gleevec, STI571) protects against both type 1 and type 2 diabetes, but as it inhibits many TKs and other proteins, it is not clear by which mechanisms it acts. This present review will focus on the possibility that imatinib acts, at least in part, by improving beta-cell function and survival via off-target effects on beta-cell signaling/metabolic flow events. Particular attention will be given to the possibility that imatinib and other TK inhibitors function as inhibitors of mitochondrial respiration. A better understanding of how imatinib counteracts diabetes will possibly help to clarify the pathogenic role of beta-cell signaling events and mitochondrial function, and hopefully leading to improved treatment of the disease.
Collapse
Affiliation(s)
- Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Treatment-free remission in patients with chronic myeloid leukemia: recommendations of the LALNET expert panel. Blood Adv 2021; 5:4855-4863. [PMID: 34438444 PMCID: PMC9153024 DOI: 10.1182/bloodadvances.2020003235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/22/2021] [Indexed: 01/26/2023] Open
Abstract
Discontinuing TKIs in LA is the new goal, and LALNET TFR recommendations for CML patients are an unmet need. TFR recommendations adapted to LA needs will make discontinuation feasible and safe in real life in the region.
Tyrosine kinase inhibitors (TKIs) have dramatically changed the survival of chronic myeloid leukemia (CML) patients, and treatment-free remission (TFR) has recently emerged as a new goal of CML treatment. The aim of this work was to develop recommendations for TKI discontinuation in Latin America (LA), outside of clinical trials. A working group of CML experts from LA discussed 22 questions regarding TFR and reached a consensus for TFR recommendations in the region. TFR is indicated in patients in first chronic phase, with typical BCR-ABL transcripts, under TKI treatment of a minimum of 5 years, in sustained deep molecular response (DMR; molecular response 4.5 [MR4.5]) for 2 years. Sustained DMR must be demonstrated on at least 4 international reporting scale quantitative polymerase chain reaction (PCR) tests, separated by at least 3 months, in the immediate prior 2 years. After second-line therapy, TFR is indicated in previously intolerant, not resistant, patients. Molecular monitoring is recommended monthly for the first 6 months, every 2 to 3 months from months 7 to 12, and every 3 months during the second year, indefinitely. Treatment should be reintroduced if major molecular response is lost. Monitoring of withdrawal syndrome, glucose levels, and lipid profile is recommended after discontinuation. After TKI reintroduction, molecular monitoring is indicated every 2 to 3 months until MR4.0 achievement; later, every 3 to 6 months. For the TFR attempt, having standardized and reliable BCR-ABL PCR tests is mandatory. These recommendations will be useful for safe discontinuation in daily practice and will benefit patients who wish to stop treatment in emergent regions, in particular, with TKI-related chronic adverse events.
Collapse
|
8
|
Mauro MJ. Lifelong TKI therapy: how to manage cardiovascular and other risks. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:113-121. [PMID: 34889360 PMCID: PMC8791114 DOI: 10.1182/hematology.2021000239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Beginning with imatinib and now spanning 6 oral, highly active, and mostly safe agents, the development of specific targeted therapy for patients with chronic myeloid leukemia (CML) has created a new world featuring chronic maintenance chemotherapy for all treated as such, treatment-free remission, and functional cure after prolonged deep remission in a subset. As a result comes a necessary shift in focus from acute to chronic toxicity, increasing attention to patient comorbidities, and critical thinking around specific adverse events such as metabolic, cardiovascular, and cardiopulmonary effects, which vary from agent to agent. This review aims to pull together the state of the art of managing the "C" in CML-a chronic myeloproliferative neoplasm treated at present over many years with oral BCR-ABL-targeted agents in a population whose overall health can be complex and potentially affected by disease and therapy-and determine how we can better manage a highly treatable and increasingly curable cancer.
Collapse
Affiliation(s)
- Michael J. Mauro
- Correspondence Michael J. Mauro, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 489, New York, NY 10065; e-mail:
| |
Collapse
|
9
|
Shao M, Hepler C, Zhang Q, Shan B, Vishvanath L, Henry GH, Zhao S, An YA, Wu Y, Strand DW, Gupta RK. Pathologic HIF1α signaling drives adipose progenitor dysfunction in obesity. Cell Stem Cell 2021; 28:685-701.e7. [PMID: 33539723 DOI: 10.1016/j.stem.2020.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
Adipose precursor cells (APCs) exhibit regional variation in response to obesity, for unclear reasons. Here, we reveal that HIFα-induced PDGFRβ signaling within murine white adipose tissue (WAT) PDGFRβ+ cells drives inhibitory serine 112 (S112) phosphorylation of PPARγ, the master regulator of adipogenesis. Levels of PPARγ S112 phosphorylation in WAT PDGFRβ+ cells are depot dependent, with levels of PPARγ phosphorylation in PDGFRβ+ cells inversely correlating with their capacity for adipogenesis upon high-fat-diet feeding. HIFα suppression in PDGFRβ+ progenitors promotes subcutaneous and intra-abdominal adipogenesis, healthy WAT remodeling, and improved metabolic health in obesity. These metabolic benefits are mimicked by treatment of obese mice with the PDGFR antagonist Imatinib, which promotes adipocyte hyperplasia and glucose tolerance in a progenitor cell PPARγ-dependent manner. Our studies unveil a mechanism underlying depot-specific responses of APCs to high-fat feeding and highlight the potential for APCs to be targeted pharmacologically to improve metabolic health in obesity.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chelsea Hepler
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qianbin Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gervaise H Henry
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Douglas W Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Chen Y, Dong X, Wang Q, Liu Z, Dong X, Shi S, Xiao H. Factors Influencing the Steady-State Plasma Concentration of Imatinib Mesylate in Patients With Gastrointestinal Stromal Tumors and Chronic Myeloid Leukemia. Front Pharmacol 2020; 11:569843. [PMID: 33381028 PMCID: PMC7768902 DOI: 10.3389/fphar.2020.569843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Imatinib mesylate (IM) is the standard treatment for advanced, metastatic gastrointestinal stromal tumors (GISTs) and chronic myeloid leukemia (CML) with a fixed daily standard dosage via the oral route. Interindividual and intraindividual variability in plasma concentrations have been closely linked to the efficacy of IM therapy. Therefore, this review identifies and describes the key factors influencing the plasma concentration of IM in patients with GISTs and CML. We used the following keywords to search the PubMed, EMBASE, Ovid, Wangfang, and CNKI databases to identify published reports: IM, plasma concentration, GISTs, CML, drug combination/interaction, pathology, and genotype/genetic polymorphism, either alone or in combination. This literature review revealed that only 10 countries have reported the mean concentrations of IM in GISTs or CML patients and the clinical outcomes in different ethnic groups and populations. There were totally 24 different gene polymorphisms, which were examined for any potential influence on the steady-state plasma concentration of IM. As a result, some genotype locus made discrepant conclusion. Herein, the more sample capacity, multicenter, long-term study was worthy to carry out. Eleven reports were enumerated on clinical drug interactions with IM, while there is not sufficient information on the pharmacokinetic parameters altered by drug combinations with IM that could help in investigating the actual drug interactions. The drug interaction with IM should be paid more attention in the future research.
Collapse
Affiliation(s)
- Yan Chen
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiuhua Dong
- Department of Stomatology, The 1st Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - QiuJu Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - ZhiXi Liu
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - XinWei Dong
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Sanjun Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - HongTao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
11
|
Zhao M, Jung Y, Jiang Z, Svensson KJ. Regulation of Energy Metabolism by Receptor Tyrosine Kinase Ligands. Front Physiol 2020; 11:354. [PMID: 32372975 PMCID: PMC7186430 DOI: 10.3389/fphys.2020.00354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic diseases, such as diabetes, obesity, and fatty liver disease, have now reached epidemic proportions. Receptor tyrosine kinases (RTKs) are a family of cell surface receptors responding to growth factors, hormones, and cytokines to mediate a diverse set of fundamental cellular and metabolic signaling pathways. These ligands signal by endocrine, paracrine, or autocrine means in peripheral organs and in the central nervous system to control cellular and tissue-specific metabolic processes. Interestingly, the expression of many RTKs and their ligands are controlled by changes in metabolic demand, for example, during starvation, feeding, or obesity. In addition, studies of RTKs and their ligands in regulating energy homeostasis have revealed unexpected diversity in the mechanisms of action and their specific metabolic functions. Our current understanding of the molecular, biochemical and genetic control of energy homeostasis by the endocrine RTK ligands insulin, FGF21 and FGF19 are now relatively well understood. In addition to these classical endocrine signals, non-endocrine ligands can govern local energy regulation, and the intriguing crosstalk between the RTK family and the TGFβ receptor family demonstrates a signaling network that diversifies metabolic process between tissues. Thus, there is a need to increase our molecular and mechanistic understanding of signal diversification of RTK actions in metabolic disease. Here we review the known and emerging molecular mechanisms of RTK signaling that regulate systemic glucose and lipid metabolism, as well as highlighting unexpected roles of non-classical RTK ligands that crosstalk with other receptor pathways.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Yunshin Jung
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Zewen Jiang
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Katrin J Svensson
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
12
|
Tyrosine kinase signaling in and on the endoplasmic reticulum. Biochem Soc Trans 2020; 48:199-205. [PMID: 32065230 DOI: 10.1042/bst20190543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023]
Abstract
Tyrosine kinases are signaling molecules that are common to all metazoans and are involved in the regulation of many cellular processes such as proliferation and survival. While most attention has been devoted to tyrosine kinases signaling at the plasma membrane and the cytosol, very little attention has been dedicated to signaling at endomembranes. In this review, I will discuss recent evidence that we obtained on signaling of tyrosine kinases at the surface of the endoplasmic reticulum (ER), as well as in the lumen of this organelle. I will discuss how tyrosine kinase signaling might regulate ER proteostasis and the implication thereof to general cell physiology.
Collapse
|
13
|
Abduelkarem AR, Anbar HS, Zaraei SO, Alfar AA, Al-Zoubi OS, Abdelkarem EG, El-Gamal MI. Diarylamides in anticancer drug discovery: A review of pre-clinical and clinical investigations. Eur J Med Chem 2019; 188:112029. [PMID: 31923860 DOI: 10.1016/j.ejmech.2019.112029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023]
Abstract
Several diarylamide compounds have been highlighted as potential anticancer agents. Among them, imatinib, dasatinib, and nilotinib have been marketed for treatment of chronic myeloid leukemia (CML). CML is a cancer type that originates in specific cells in bone marrow and is considered as life-threating disease. Imatinib is the first generation of tyrosine kinase inhibitor (TKI) to be approved for treatment of CML. Second generation drugs, dasatinib and nilotinib, were introduced for patients that are resistant or intolerant to imatinib therapy. Second generation drugs induce faster responses with fewer side effects when compared to imatinib. In this literature review, we reviewed recent advances of diarylamide anticancer agents, including first and second generation drugs treating CML and their other uses, in addition to other compounds that are still in preclinical phases. This review focuses on the reports published in the literature from 2010 to 2019.
Collapse
Affiliation(s)
| | - Hanan S Anbar
- Dubai Pharmacy College, Dubai 19099, United Arab Emirates
| | - Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Aya A Alfar
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Omayma S Al-Zoubi
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Eveen G Abdelkarem
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|