1
|
Xiao S, Sun G, Huang S, Lin C, Li Y. Nanoarchitectonics-Based Materials as a Promising Strategy in the Treatment of Endodontic Infections. Pharmaceutics 2024; 16:759. [PMID: 38931881 PMCID: PMC11207628 DOI: 10.3390/pharmaceutics16060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Endodontic infections arise from the interactive activities of microbial communities colonizing in the intricate root canal system. The present study aims to update the latest knowledge of nanomaterials, their antimicrobial mechanisms, and their applications in endodontics. A detailed literature review of the current knowledge of nanomaterials used in endodontic applications was performed using the PubMed database. Antimicrobial nanomaterials with a small size, large specific surface area, and high chemical activity are introduced to act as irrigants, photosensitizer delivery systems, and medicaments, or to modify sealers. The application of nanomaterials in the endodontic field could enhance antimicrobial efficiency, increase dentin tubule penetration, and improve treatment outcomes. This study supports the potential of nanomaterials as a promising strategy in treating endodontic infections.
Collapse
Affiliation(s)
- Suli Xiao
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| | - Guanwen Sun
- Department of Stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen 361018, China;
| | - Shan Huang
- Department of Stomatology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361005, China;
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| | - Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| |
Collapse
|
2
|
Kumar KK, Pai V, Joshi SN, Ashok, Nadig R. Effect of Chitosan Irrigant and Lubricating Gel on Bond Strength of Resin Sealer to Radicular Dentin: An In Vitro Study. Cureus 2024; 16:e60143. [PMID: 38872650 PMCID: PMC11170226 DOI: 10.7759/cureus.60143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The adhesive strength of sealers to dentin is influenced by various factors, and the presence of a smear layer is among the critical variables. Chitosan, known for its dentin compatibility, has previously demonstrated a reduction in dentin change and resin sealer bond strength comparable to ethylenediaminetetraacetic acid (EDTA) when used as an irrigant and final rinse. The study investigates the impact of chitosan, used as both a lubricating gel and final rinse, on the push-out bond strength of resin sealer. MATERIALS AND METHOD Forty single-rooted premolar teeth, each with a fully formed root and a single root canal, were collected post-extraction. During canal preparation, 1 ml sodium hypochlorite (3%) was used for irrigation at every change of instrument, followed by applying specific chelating gel and final rinse for each experimental group. The groups included: Group 1 (17% EDTA chelating gel, final rinse with saline), Group 2 (17% EDTA chelating gel, final rinse with 17% EDTA solution), Group 3 (chitosan chelating gel, final rinse with saline solution), and Group 4 (chitosan chelating gel, final rinse with 0.2% chitosan solution), 10 specimens in each group. After obturation, specimens were sealed and incubated for a week at 37°C with 100% humidity. The universal testing machine was used for push-out tests, and specimens were examined using a scanning electron microscope (SEM) to identify various types of bond failure. RESULTS Among the four groups, Group 2 exhibited the highest mean push-out bond strength (7.33 ± 0.26 MPa), followed by Group 4 (5.33 ± 0.25 MPa), Group 1 (4.61 ± 0.30 MPa), and Group 3 (2.94 ± 0.32 MPa). The variations in bond strength suggest a notable impact of the chelating agents and final rinse solutions on the resin sealer's interaction with dentin. CONCLUSION The study concludes that the use of EDTA as both a lubricating gel and a final rinse significantly enhances push-out bond strength, outperforming chitosan in this study. Groups with saline as the final rinse (Group 1 and Group 3) exhibited the least bond strength, highlighting the importance of the final rinse in root canal therapy.
Collapse
Affiliation(s)
- Karthika K Kumar
- Conservative Dentistry and Endodontics, Dayananda Sagar College of Dental Sciences, Bengaluru, IND
| | - Veena Pai
- Conservative Dentistry and Endodontics, Dayananda Sagar College of Dental Sciences, Bengaluru, IND
| | - S N Joshi
- Research and Development, Everest Biotech, Bengaluru, IND
| | - Ashok
- Conservative Dentistry and Endodontics, Dayananda Sagar College of Dental Sciences, Bengaluru, IND
| | - Roopa Nadig
- Conservative Dentistry and Endodontics, Dayananda Sagar College of Dental Sciences, Bengaluru, IND
| |
Collapse
|
3
|
Afkhami F, Chen Y, Walsh LJ, Peters OA, Xu C. Application of Nanomaterials in Endodontics. BME FRONTIERS 2024; 5:0043. [PMID: 38711803 PMCID: PMC11070857 DOI: 10.34133/bmef.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 05/08/2024] Open
Abstract
Recent advancements in nanotechnology have introduced a myriad of potential applications in dentistry, with nanomaterials playing an increasing role in endodontics. These nanomaterials exhibit distinctive mechanical and chemical properties, rendering them suitable for various dental applications in endodontics, including obturating materials, sealers, retro-filling agents, and root-repair materials. Certain nanomaterials demonstrate versatile functionalities in endodontics, such as antimicrobial properties that bolster the eradication of bacteria within root canals during endodontic procedures. Moreover, they offer promise in drug delivery, facilitating targeted and controlled release of therapeutic agents to enhance tissue regeneration and repair, which can be used for endodontic tissue repair or regeneration. This review outlines the diverse applications of nanomaterials in endodontics, encompassing endodontic medicaments, irrigants, obturating materials, sealers, retro-filling agents, root-repair materials, as well as pulpal repair and regeneration. The integration of nanomaterials into endodontics stands poised to revolutionize treatment methodologies, presenting substantial potential advancements in the field. Our review aims to provide guidance for the effective translation of nanotechnologies into endodontic practice, serving as an invaluable resource for researchers, clinicians, and professionals in the fields of materials science and dentistry.
Collapse
Affiliation(s)
- Farzaneh Afkhami
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Yuan Chen
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Laurence J. Walsh
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Ove A. Peters
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Chun Xu
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre,
The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
4
|
Sharifzadeh SS, Gerami Amin M, Moezzi Ghadim N, Fazlyab M, Azizi A. Comparative Analysis of Photosensitizer Penetration Depth in Root Canal Debridement for Endodontic Disinfection. IRANIAN ENDODONTIC JOURNAL 2024; 19:35-38. [PMID: 38223841 PMCID: PMC10787188 DOI: 10.22037/iej.v19i1.41545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/23/2023] [Accepted: 08/25/2023] [Indexed: 01/16/2024]
Abstract
Introduction Microbial agents play a crucial role in periapical lesions and despite mechanical preparation, presence of persistent bacteria in root canal system is a challenge. Photodynamic therapy offers a debridement method, utilizing photosensitizers such as Curcumin, Indocyanine Green (ICG), and Methylene Blue (MB). This study aimed to assess and compare the penetration depth of these photosensitizers on the lateral surface of the root canal. Materials and Methods The crown of 30 single-rooted teeth were separated by a diamond disc. The canals were prepared using a rotary system and were rinsed with 10 mL of 2.5% NaOCl. In order to remove the smear layer debris, 17% EDTA was placed in the root canal for 1 min, then rinsed with NaOCl and saline. The teeth were sterilized by autoclave and randomly assigned to three groups that filled with curcumin, ICG, or MB. Subsequently, they were incubated for 10 min and dried up by paper. Longitudinal sections were cut, and penetration depth of the photosensitizers in coronal, middle, and apical sections were measured using a stereomicroscope. Results Curcumin demonstrated a higher average penetration depth (3000 µm) than MB, and MB showed higher penetration depth than ICG. Significantly different penetration depths were observed in pairwise comparisons among all three groups (P<0.005). Conclusion Curcumin with its superior average penetration depth, emerges as a promising choice for effective root canal disinfection in endodontic treatments. Consideration of these findings may enhance the selection of photosensitizers in clinical applications.
Collapse
Affiliation(s)
- Seyedeh Saba Sharifzadeh
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran;
| | | | - Nahid Moezzi Ghadim
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran;
| | - Mahta Fazlyab
- Department of Endodontic, Dental Branch, Islamic Azad University, Tehran, Iran; Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Azizi
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran;
| |
Collapse
|
5
|
Wang Y, Zhang X, Zheng H, Zhou Z, Li S, Jiang J, Li M, Fu B. Remineralization of Dentin with Cerium Oxide and Its Potential Use for Root Canal Disinfection. Int J Nanomedicine 2023; 19:1-17. [PMID: 38179219 PMCID: PMC10763684 DOI: 10.2147/ijn.s441060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Objective This study was to investigate a novel antibacterial biomimetic mineralization strategy for exploring its potential application for root canal disinfection when stabilized cerium oxide was used. Material and Methods A biomimetic mineralization solution (BMS) consisting of cerium nitrate and dextran was prepared. Single-layer collagen fibrils, collagen membranes, demineralized dentin, and root canal system were treated with the BMS for mineralization. The mineralized samples underwent comprehensive characterization using various techniques, including transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), selected-area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and micro-CT. Additionally, the antimicrobial properties of the BMS and the remineralized dentin were also analyzed with broth microdilution method, live/dead staining, and SEM. Results Cerium ions in the BMS underwent a transformation into cerium oxide nanoparticles, which were deposited in the inter- and intra-fibrillar collagen spaces through a meticulous bottom-up process. XPS analysis disclosed the presence of both Ce (III) and Ce (IV) of the generated cerium oxides. A comprehensive examination utilizing SEM and micro-CT identified the presence of cerium oxide nanoparticles deposited within the dentinal tubules and lateral canals of the root canal system. The BMS and remineralized dentin exhibited substantial antibacterial efficacy against E. faecalis, as substantiated by assessments involving the broth dilution method and live/dead staining technique. The SEM findings revealed the cell morphological changes of deceased E. faecalis. Conclusion This study successfully demonstrated antibacterial biomimetic mineralization as well as sealing dentinal tubules and lateral branches of root canals using cerium nitrate and dextran. This novel biomimetic mineralization could be used as an alternative strategy for root canal disinfection.
Collapse
Affiliation(s)
- Yinlin Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, People’s Republic of China
| | - Xinyue Zhang
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, People’s Republic of China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, People’s Republic of China
| | - Si Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, People’s Republic of China
| | - Jimin Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, People’s Republic of China
| | - Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, People’s Republic of China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
6
|
Afkhami F, Forghan P, Gutmann JL, Kishen A. Silver Nanoparticles and Their Therapeutic Applications in Endodontics: A Narrative Review. Pharmaceutics 2023; 15:715. [PMID: 36986576 PMCID: PMC10052550 DOI: 10.3390/pharmaceutics15030715] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The efficient elimination of microorganisms and their byproducts from infected root canals is compromised by the limitations in conventional root canal disinfection strategies and antimicrobials. Silver nanoparticles (AgNPs) are advantageous for root canal disinfection, mainly due to their wide-spectrum anti-microbial activity. Compared to other commonly used nanoparticulate antibacterials, AgNPs have acceptable antibacterial properties and relatively low cytotoxicity. Owing to their nano-scale, AgNPs penetrate deeper into the complexities of the root canal systems and dentinal tubules, as well as enhancing the antibacterial properties of endodontic irrigants and sealers. AgNPs gradually increase the dentin hardness in endodontically treated teeth and promote antibacterial properties when used as a carrier for intracanal medication. The unique properties of AgNPs make them an ideal additive for different endodontic biomaterials. However, the possible side effects of AgNPs, such as cytotoxicity and tooth discoloration potential, merits further research.
Collapse
Affiliation(s)
- Farzaneh Afkhami
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran 1439955991, Iran
| | - Parisa Forghan
- School of Dentistry, Tehran University of Medical Sciences, Tehran 1894787545, Iran
| | - James L. Gutmann
- Department of Endodontics, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| |
Collapse
|