1
|
Sun T, Huang H, Zhao Y, Li Z, Wang H, Zhou G. Low-Temperature Deposited Amorphous Poly(aryl ether ketone) Hierarchically Porous Scaffolds with Strontium-Doped Mineralized Coating for Bone Defect Repair. Adv Healthc Mater 2024; 13:e2400927. [PMID: 38717232 DOI: 10.1002/adhm.202400927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Indexed: 06/06/2024]
Abstract
In recent years, the demand for clinical bone grafting has increased. As a new solution for orthopedic implants, polyether ether ketone (PEEK, crystalline PAEK) has excellent comprehensive performance and is practically applied in the clinic. In this research, a noteworthy elevated scheme to enhance the performance of PEEK scaffolds is presented. The amorphous aggregated poly (aryl ether ketone) (PAEK) resin is prepared as the matrix material, which maintains high mechanical strength and can be processed through the solution. So, the tissue engineering scaffolds with multilevel pores can be printed by low-temperature deposited manufacturing (LDM) to improve biologically inert scaffolds with smooth surfaces. Also, the feature of PAEK's solution processing is profitable to uniformly add the functional components for bone repair. Ultimately, A system of orthopedic implantable PAEK material based on intermolecular interactions, surface topology, and surface modification is established. The specific steps include synthesizing PAEK that contain polar carboxyl structures, preparing bioinks and fabricating scaffolds by LDM, preparation of scaffolds with strontium-doped mineralized coatings, evaluation of their osteogenic properties in vitro and in vivo, and investigation on the effect and mechanism of scaffolds in promoting osteogenic differentiation. This work provides an upgraded system of PAEK implantable materials for clinical application.
Collapse
Affiliation(s)
- Tianze Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Huagui Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yantao Zhao
- Institute of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Honghua Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Guangyuan Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
2
|
Nunes FC, Santos SIP, Colnago LA, Hammer P, Ferreira JA, Ambrósio CE, Pallone EMJA. Impact of ZrO 2 Content on the Formation of Sr-Enriched Phosphates in Al 2O 3/ZrO 2 Nanocomposites for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1893. [PMID: 38673250 PMCID: PMC11052522 DOI: 10.3390/ma17081893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
This study investigates the profound impact of the ZrO2 inclusion volume on the characteristics of Al2O3/ZrO2 nanocomposites, particularly influencing the formation of calcium phosphates on the surface. This research, aimed at advancing tissue engineering, prepared nanocomposites with 5, 10, and 15 vol% ZrO2, subjecting them to chemical surface treatment for enhanced calcium phosphate deposition sites. Biomimetic coating with Sr-enriched simulated body fluid (SBF) further enhanced the bioactivity of nanocomposites. While the ZrO2 concentration heightened the oxygen availability on nanocomposite surfaces, the quantity of Sr-containing phosphate was comparatively less influenced than the formation of calcium phosphate phases. Notably, the coated nanocomposites exhibited a high cell viability and no toxicity, signifying their potential in bone tissue engineering. Overall, these findings contribute to the development of regenerative biomaterials, holding promise for enhancing bone regeneration therapies.
Collapse
Affiliation(s)
- Fabio Caixeta Nunes
- Postgraduate Programme in Materials Science and Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil;
| | - Sarah Ingrid Pinto Santos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil; (S.I.P.S.); (C.E.A.)
| | - Luiz Alberto Colnago
- Brazilian Agricultural Research Corporation, EMBRAPA Instrumentation, Rua Quinze de Novembro, 1500/1501, São Carlos 13561-206, SP, Brazil;
| | - Peter Hammer
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil;
| | - Julieta Adriana Ferreira
- Fundação Hermínio Ometto, Fundação Hermínio Ometto (FHO), Av. Dr. Maximiliano Baruto, 500, Araras 13607-339, SP, Brazil;
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil; (S.I.P.S.); (C.E.A.)
| | - Eliria Maria Jesus Agnolon Pallone
- Postgraduate Programme in Materials Science and Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil;
- Department of Biosystem Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
3
|
Nhan J, Strebel N, Virah Sawmy K, Yin J, St-Pierre JP. Characterization of Calcium- and Strontium-Polyphosphate Particles Toward Drug Delivery into Articular Cartilage. Macromol Biosci 2024; 24:e2300345. [PMID: 37777870 DOI: 10.1002/mabi.202300345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Drug delivery into articular cartilage poses many challenges due in part to its lack of vasculature. While intra-articular injections are effective for the local administration of drugs, small molecules are rapidly cleared from the synovial fluid. As such, there is a need to develop effective drug delivery strategies to improve the residence times of bioactive molecules in the joint and elicit a sustained therapeutic effect. In this study, calcium- and strontium-polyphosphate particles are synthesized and characterized as potential drug carriers into articular cartilage. Physicochemical characterization reveals that the particles exhibit a spherical morphology, have a negative zeta potential, and are nanoscale in size. Biological characterization in chondrocytes confirms cellular uptake of the particles and demonstrates both size and concentration-dependent cytotoxicity at high concentrations. Furthermore, treatment of chondrocytes with these particles results in a reduction in cell proliferation and metabolic activity, confirming biological effects. Finally, incubation with cartilage tissue explants suggests successful uptake, despite the particles exhibiting a negative surface charge. Therefore, from the results of this study, these polyphosphate-based particles have potential as a drug carrier into articular cartilage and warrant further development.
Collapse
Affiliation(s)
- Jordan Nhan
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Nicolas Strebel
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Khushnouma Virah Sawmy
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Jordan Yin
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Jean-Philippe St-Pierre
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
4
|
Chandrasekaran K, Kakani V, Kokkarachedu V, Abdulrahman Syedahamed HH, Palani S, Arumugam S, Shanmugam A, Kim S, Kim K. Toxicological assessment of divalent ion-modified ZnO nanomaterials through artificial intelligence and in vivo study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106826. [PMID: 38219502 DOI: 10.1016/j.aquatox.2023.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
The nanotechnology-driven industrial revolution widely relies on metal oxide-based nanomaterial (NM). Zinc oxide (ZnO) production has rapidly increased globally due to its outstanding physical and chemical properties and versatile applications in industries including cement, rubber, paints, cosmetics, and more. Nevertheless, releasing Zn2+ ions into the environment can profoundly impact living systems and affect water-based ecosystems, including biological ones. In aquatic environments, Zn2+ ions can change water properties, directly influencing underwater ecosystems, especially fish populations. These ions can accumulate in fish tissues when fish are exposed to contaminated water and pose health risks to humans who consume them, leading to symptoms such as nausea, vomiting, and even organ damage. To address this issue, safety of ZnO NMs should be enhanced without altering their nanoscale properties, thus preventing toxic-related problems. In this study, an eco-friendly precipitation method was employed to prepare ZnO NMs. These NMs were found to reduce ZnO toxicity levels by incorporating elements such as Mg, Ca, Sr, and Ba. Structural, morphological, and optical properties of synthesized NMs were thoroughly investigated. In vitro tests demonstrated potential antioxidative properties of NMs with significant effects on free radical scavenging activities. In vivo, toxicity tests were conducted using Oreochromis mossambicus fish and male Swiss Albino mice to compare toxicities of different ZnO NMs. Fish and mice exposed to these NMs exhibited biochemical changes and histological abnormalities. Notably, ZnCaO NMs demonstrated lower toxicity to fish and mice than other ZnO NMs. This was attributed to its Ca2+ ions, which could enhance body growth metabolism compared to other metals, thus improving material safety. Furthermore, whether nanomaterials' surface roughness might contribute to their increased toxicity in biological systems was investigated utilizing computer vision (CV)-based AI tools to obtain SEM images of NMs, providing valuable image-based surface morphology data that could be correlated with relevant toxicology studies.
Collapse
Affiliation(s)
| | - Vijay Kakani
- Integrated System Engineering, Inha University, Inha-ro, Incheon, 22212, Republic of Korea
| | - Varaprasad Kokkarachedu
- Facultad de Ingeniería, Arquitectura y Deseno, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Bio-Bio, Chile
| | | | - Suganthi Palani
- KIRND Institute of Research and Development Pvt Ltd, Tiruchirappalli, Tamil Nadu 620 020, India
| | - Stalin Arumugam
- Department of Zoology, National College (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, 620 001, India
| | - Achiraman Shanmugam
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
5
|
Stipniece L, Ramata-Stunda A, Vecstaudza J, Kreicberga I, Livkisa D, Rubina A, Sceglovs A, Salma-Ancane K. A Comparative Study on Physicochemical Properties and In Vitro Biocompatibility of Sr-Substituted and Sr Ranelate-Loaded Hydroxyapatite Nanoparticles. ACS APPLIED BIO MATERIALS 2023; 6:5264-5281. [PMID: 38039078 PMCID: PMC10731655 DOI: 10.1021/acsabm.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Synthetic hydroxyapatite nanoparticles (nHAp) possess compositional and structural similarities to those of bone minerals and play a key role in bone regenerative medicine. Functionalization of calcium phosphate biomaterials with Sr, i.e., bone extracellular matrix trace element, has been proven to be an effective biomaterial-based strategy for promoting osteogenesis in vitro and in vivo. Functionalizing nHAp with Sr2+ ions or strontium ranelate (SrRAN) can provide favorable bone tissue regeneration by locally delivering bioactive molecules to the bone defect microenvironment. Moreover, administering an antiosteoporotic drug, SrRAN, directly into site-specific bone defects could significantly reduce the necessary drug dosage and the risk of possible side effects. Our study evaluated the impact of the Sr source (Sr2+ ions and SrRAN) used to functionalize nHAp by wet precipitation on its in vitro cellular activities. The systematic comparison of physicochemical properties, in vitro Sr2+ and Ca2+ ion release, and their effect on in vitro cellular activities of the developed Sr-functionalized nHAp was performed. The ion release tests in TRIS-HCl demonstrated a 21-day slow and continuous release of the Sr2+ and Ca2+ ions from both Sr-substituted nHAp and SrRAN-loaded HAp. Also, SrRAN and Sr2+ ion release kinetics were evaluated in DMEM to understand their correlation with in vitro cellular effects in the same time frame. Relatively low concentration (up to 2 wt %) of Sr in the nHAp led to an increase in the alkaline phosphatase activity in preosteoblasts and expression of collagen I and osteocalcin in osteoblasts, demonstrating their ability to boost bone formation.
Collapse
Affiliation(s)
- Liga Stipniece
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Anna Ramata-Stunda
- Department
of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - Jana Vecstaudza
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Inta Kreicberga
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Dora Livkisa
- Department
of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - Anna Rubina
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Artemijs Sceglovs
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Kristine Salma-Ancane
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| |
Collapse
|
6
|
Tharakan S, Khondkar S, Lee S, Ahn S, Mathew C, Gresita A, Hadjiargyrou M, Ilyas A. 3D Printed Osteoblast-Alginate/Collagen Hydrogels Promote Survival, Proliferation and Mineralization at Low Doses of Strontium Calcium Polyphosphate. Pharmaceutics 2022; 15:pharmaceutics15010011. [PMID: 36678641 PMCID: PMC9865428 DOI: 10.3390/pharmaceutics15010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The generation of biomaterials via 3D printing is an emerging biotechnology with novel methods that seeks to enhance bone regeneration. Alginate and collagen are two commonly used biomaterials for bone tissue engineering and have demonstrated biocompatibility. Strontium (Sr) and Calcium phosphate (CaP) are vital elements of bone and their incorporation in composite materials has shown promising results for skeletal repair. In this study, we investigated strontium calcium polyphosphate (SCPP) doped 3D printed alginate/collagen hydrogels loaded with MC3T3-E1 osteoblasts. These cell-laden scaffolds were crosslinked with different concentrations of 1% SCPP to evaluate the effect of strontium ions on cell behavior and the biomaterial properties of the scaffolds. Through scanning electron microscopy and Raman spectroscopy, we showed that the scaffolds had a granular surface topography with the banding pattern of alginate around 1100 cm-1 and of collagen around 1430 cm-1. Our results revealed that 2 mg/mL of SCPP induced the greatest scaffold degradation after 7 days and least amount of swelling after 24 h. Exposure of osteoblasts to SCPP induced severe cytotoxic effects after 1 mg/mL. pH analysis demonstrated acidity in the presence of SCPP at a pH between 2 and 4 at 0.1, 0.3, 0.5, and 1 mg/mL, which can be buffered with cell culture medium. However, when the SCPP was added to the scaffolds, the overall pH increased indicating intrinsic activity of the scaffold to buffer the SCPP. Moreover, cell viability was observed for up to 21 days in scaffolds with early mineralization at 0.3, 0.5, and 1 mg/mL of SCPP. Overall, low doses of SCPP proved to be a potential additive in biomaterial approaches for bone tissue engineering; however, the cytotoxic effects due to its pH must be monitored closely.
Collapse
Affiliation(s)
- Shebin Tharakan
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Shams Khondkar
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Bioengineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Sally Lee
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Serin Ahn
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Chris Mathew
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Andrei Gresita
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
- Correspondence: (M.H.); (A.I.)
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
- Correspondence: (M.H.); (A.I.)
| |
Collapse
|
7
|
Furko M, Horváth ZE, Czömpöly O, Balázsi K, Balázsi C. Biominerals Added Bioresorbable Calcium Phosphate Loaded Biopolymer Composites. Int J Mol Sci 2022; 23:ijms232415737. [PMID: 36555378 PMCID: PMC9779388 DOI: 10.3390/ijms232415737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Nanocrystalline calcium phosphate (CP) bioceramic coatings and their combination with biopolymers are innovative types of resorbable coatings for load-bearing implants that can promote the integration of metallic implants into human bodies. The nanocrystalline, amorphous CP particles are an advantageous form of the various calcium phosphate phases since they have a faster dissolution rate than that of crystalline hydroxyapatite. Owing to the biomineral additions (Mg, Zn, Sr) in optimized concentrations, the base CP particles became more similar to the mineral phase in human bones (dCP). The effect of biomineral addition into the CaP phases was thoroughly studied. The results showed that the shape, morphology, and amorphous characteristic slightly changed in the case of biomineral addition in low concentrations. The optimized dCP particles were then incorporated into a chosen polycaprolactone (PCL) biopolymer matrix. Very thin, non-continuous, rough layers were formed on the surface of implant substrates via the spin coating method. The SEM elemental mapping proved the perfect incorporation and distribution of dCP particles into the polymer matrix. The bioresorption rate of thin films was followed by corrosion measurements over a long period of time. The corrosion results indicated a faster dissolution rate for the dCP-PCL composite compared to the dCP and CP powder layers.
Collapse
|