1
|
Zou Y, Guo Z, Ge XY, Qiu Y. RNA Modifications in Pathogenic Viruses: Existence, Mechanism, and Impacts. Microorganisms 2024; 12:2373. [PMID: 39597761 PMCID: PMC11596894 DOI: 10.3390/microorganisms12112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
RNA modification is a key posttranscriptional process playing various biological roles, and one which has been reported to exist extensively in cellular RNAs. Interestingly, recent studies have shown that viral RNAs also contain a variety of RNA modifications, which are regulated dynamically by host modification machinery and play critical roles in different stages of the viral life cycle. In this review, we summarize the reports of four typical modifications reported on viral RNAs, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), and N1-methyladenosine (m1A), describe the molecular mechanisms of these modification processes, and illustrate their impacts on viral replication, pathogenicity, and innate immune responses. Notably, we find that RNA modifications in different viruses share some common features and mechanisms in their generation, regulation, and function, highlighting the potential for viral RNA modifications and the related host machinery to serve as the targets or bases for the development of antiviral therapeutics and vaccines.
Collapse
Affiliation(s)
| | | | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410012, China; (Y.Z.); (Z.G.)
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410012, China; (Y.Z.); (Z.G.)
| |
Collapse
|
2
|
Karandashov I, Kachanov A, Dukich M, Ponomareva N, Brezgin S, Lukashev A, Pokrovsky VS, Chulanov V, Kostyusheva A, Kostyushev D. m 6A Methylation in Regulation of Antiviral Innate Immunity. Viruses 2024; 16:601. [PMID: 38675942 PMCID: PMC11054785 DOI: 10.3390/v16040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The epitranscriptomic modification m6A is a prevalent RNA modification that plays a crucial role in the regulation of various aspects of RNA metabolism. It has been found to be involved in a wide range of physiological processes and disease states. Of particular interest is the role of m6A machinery and modifications in viral infections, serving as an evolutionary marker for distinguishing between self and non-self entities. In this review article, we present a comprehensive overview of the epitranscriptomic modification m6A and its implications for the interplay between viruses and their host, focusing on immune responses and viral replication. We outline future research directions that highlight the role of m6A in viral nucleic acid recognition, initiation of antiviral immune responses, and modulation of antiviral signaling pathways. Additionally, we discuss the potential of m6A as a prognostic biomarker and a target for therapeutic interventions in viral infections.
Collapse
Affiliation(s)
- Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Maria Dukich
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Faculty of Virology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alexander Lukashev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Vadim S. Pokrovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- Blokhin National Medical Research Center of Oncology, 117198 Moscow, Russia
- Faculty of Biochemistry, RUDN University, 117198 Moscow, Russia
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia;
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Faculty of Bioengineering and Biotechnologies, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
3
|
Sun X, Meng X, Piao Y, Dong S, Dong Q. METTL3 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells through IGF2BP1-Mediated Regulation of Runx2 Stability. Int J Med Sci 2024; 21:664-673. [PMID: 38464837 PMCID: PMC10920842 DOI: 10.7150/ijms.90485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024] Open
Abstract
N6-Methyladenosine (m6A) has been reported to play a dynamic role in osteoporosis and bone metabolism. However, whether m6A is involved in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) remains unclear. Here, we found that methyltransferase-like 3 (METTL3) was up-regulated synchronously with m6A during the osteogenic differentiation of hPDLSCs. Functionally, lentivirus-mediated knockdown of METTL3 in hPDLSCs impaired osteogenic potential. Mechanistic analysis further showed that METTL3 knockdown decreased m6A methylation and reduced IGF2BP1-mediated stability of runt-related transcription factor 2 (Runx2) mRNA, which in turn inhibited osteogenic differentiation. Therefore, METTL3-based m6A modification favored osteogenic differentiation of hPDLSCs through IGF2BP1-mediated Runx2 mRNA stability. Our study shed light on the critical roles of m6A on regulation of osteogenic differentiation in hPDLSCs and served novel therapeutic approaches in vital periodontitis therapy.
Collapse
Affiliation(s)
- Xuefei Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiujiao Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yu Piao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Qianqian Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Chen X, Qin Y, Wang X, Lei H, Zhang X, Luo H, Guo C, Sun W, Fang S, Qin W, Jin Z. METTL3-Mediated m6A Modification Regulates the Osteogenic Differentiation through LncRNA CUTALP in Periodontal Mesenchymal Stem Cells of Periodontitis Patients. Stem Cells Int 2024; 2024:3361794. [PMID: 38283119 PMCID: PMC10817817 DOI: 10.1155/2024/3361794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/29/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Objective Periodontitis is a chronic inflammatory disease that causes loss of periodontal support tissue. Our objective was to investigate the mechanism by which METTL3-mediated N6-methyladenosine modification regulates the osteogenic differentiation through lncRNA in periodontal mesenchymal stem cells in patients with periodontitis (pPDLSCs). Material and Methods. We carried out a series of experiments, including methylated RNA immunoprecipitation-PCR, quantitative real-time polymerase chain reaction, and western blotting. The expressions of alkaline phosphatase (ALP), Runx2, Col1, Runx2 protein level, ALP staining, and Alizarin red staining were used to demonstrate the degree of osteogenic differentiation. Results We found that METTL3 was the most significantly differentially expressed methylation-related enzyme in pPDLSCs and promoted osteogenic differentiation of pPDLSCs. METTL3 regulated the stability and expression of lncRNA CUTALP, while lncRNA CUTALP promoted osteogenic differentiation of pPDLSCs by inhibiting miR-30b-3p. At different time points of osteogenic differentiation, lncRNA CUTALP expression was positively correlated with Runx2, while miR-30b-3p showed the opposite pattern. The attenuated osteogenic differentiation induced by METTL3 knockdown was recovered by lncRNA CUTALP overexpression. The attenuated osteogenic differentiation induced by lncRNA CUTALP knockdown could be reversed by the miR-30b-3p inhibitor. Conclusions In summary, METTL3/lncRNA CUTALP/miR-30b-3p/Runx2 is a regulatory network in the osteogenic differentiation of pPDLSCs.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Yuan Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Xian Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 730070, China
| | - Xiaochen Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Houzhuo Luo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Changgang Guo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Weifu Sun
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Shishu Fang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Wen Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
5
|
Yu Y, Liang C, Wang X, Shi Y, Shen L. The potential role of RNA modification in skin diseases, as well as the recent advances in its detection methods and therapeutic agents. Biomed Pharmacother 2023; 167:115524. [PMID: 37722194 DOI: 10.1016/j.biopha.2023.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023] Open
Abstract
RNA modification is considered as an epigenetic modification that plays an indispensable role in biological processes such as gene expression and genome editing without altering nucleotide sequence, but the molecular mechanism of RNA modification has not been discussed systematically in the development of skin diseases. This article mainly presents the whole picture of theoretical achievements on the potential role of RNA modification in dermatology. Furthermore, this article summarizes the latest advances in clinical practice related with RNA modification, including its detection methods and drug development. Based on this comprehensive review, we aim to illustrate the current blind spots and future directions of RNA modification, which may provide new insights for researchers in this field.
Collapse
Affiliation(s)
- Yue Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Chen Liang
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.
| | - Liangliang Shen
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|