1
|
Radermacher C, Craveiro RB, Jahnen-Dechent W, Beier JP, Bülow A, Wolf M, Neuss S. Impact of compression forces on different mesenchymal stem cell types regarding orthodontic indication. Stem Cells Transl Med 2024; 13:1028-1039. [PMID: 39181541 PMCID: PMC11465164 DOI: 10.1093/stcltm/szae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/29/2024] [Indexed: 08/27/2024] Open
Abstract
The potential of stem cells, for example upper periodontal ligament stem cells from the maxilla (u-PDLSC) and from the mandible (l-PDLSC), adipose-derived mesenchymal stem cells (AD-MSC), and bone marrow-derived mesenchymal stem cells (BM-MSC), with respect to periodontal remodeling and orthodontic treatment is of great importance. In this work, we focus on the comprehensive adaptability of different stem cell types to mechanical forces with the aim to better understanding cell behavior and to refine a new mechanistic approach to investigate periodontal remodeling. We comprehensively analyze stem cells and observe distinct morphological and proliferation changes under compression in dependence on stem cell type. The cell signaling of extracellular signal-regulated kinase (ERK) and protein kinase B, also called AKT, and their respective phosphorylation shows diverse responses to compression. Additionally, vascular endothelial growth factor and hepatocyte growth factor secretion were reduced under mechanical stress in all cell types, with cell-specific variations. Osteoprotegerin secretion was reduced under compression, particularly in u-PDLSC. At least, diverse soluble receptors of NF-kB-ligand secretion patterns among cell types under pressure were observed, providing crucial insights into bone metabolism. These findings offer a deeper understanding of the behavior of mesenchymal stem cells under mechanical stimuli, highlighting their roles in bone remodeling, wound healing, and tissue regeneration in orthodontic and regenerative medicine contexts. Our results underscore the potential of u-PDLSC, l-PDLSC, and AD-MSC in periodontal regeneration, with AD-MSC showing notable resilience under compression, indicating its promising role for further investigation for orthodontic research. While these findings are encouraging, further research is essential to fully comprehend the mechanism of stem cell-based periodontal therapies.
Collapse
Affiliation(s)
- Chloé Radermacher
- Department of Orthodontics, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Wilhelm Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Justus P Beier
- Department for Plastic Surgery, Hand, and Burn Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Astrid Bülow
- Department for Plastic Surgery, Hand, and Burn Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sabine Neuss
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
2
|
You J, Zhang Q, Qian L, Shi Z, Wang X, Jia L, Xia Y. Antibacterial periodontal ligament stem cells enhance periodontal regeneration and regulate the oral microbiome. Stem Cell Res Ther 2024; 15:334. [PMID: 39334342 PMCID: PMC11437971 DOI: 10.1186/s13287-024-03939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The transplantation of periodontal ligament stem cells (PDLSCs) has been shown to enhance periodontal regeneration in animal models and clinical trials. However, it is not known whether PDLSCs are antibacterial and whether this affects oral microbiota and periodontal regeneration. METHODS We isolated human PDLSCs from periodontal ligament of extracted teeth. Rats' periodontal fenestration defects were prepared, and treated with PDLSC injections (Cell group), using saline injections (Saline group) as the control. The oral microbiota was explored by 16 S rDNA sequencing and compared with that before surgery (PRE group). The antibacterial property of PDLSCs and its underlying mechanism were tested in vitro. RESULTS Microbiome analyses reveal a decreased biodiversity, a changed community structure, and downregulated community functions of the oral microbiome in the Saline group. PDLSCs injections enhance periodontal regeneration, reverse the decrease in diversity, and increase the abundance of non-pathogenic bacterial Bifidobacterium sp. and Lactobacillus sp., making the oral microbiome similar to that of the PRE group. In vitro, PDLSCs inhibit the growth of Staphylococcus aureus, Escherichia coli, and Fusobacterium nucleatum. The main mechanism of action is postulated to involve production of the cationic antimicrobial peptide LL-37. CONCLUSIONS Our findings reveal that PDLSC injections enhance periodontal regeneration and regulate the oral microbiome to foster an oral cavity microenvironment conducive to symbiotic microbiota associated with health.
Collapse
Affiliation(s)
- Jiayi You
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qian Zhang
- Suzhou Stomatological Hospital, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Linjue Qian
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zihan Shi
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Xinyue Wang
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lu Jia
- Department of Emergency General Dentistry, Hebei Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yang Xia
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Campagna A, Baima G, Romano F, Amoroso F, Mussano F, Oteri G, Aimetti M, Peditto M. Orally Derived Stem Cell-Based Therapy in Periodontal Regeneration: A Systematic Review and Meta-Analysis of Randomized Clinical Studies. Dent J (Basel) 2024; 12:145. [PMID: 38786543 PMCID: PMC11120617 DOI: 10.3390/dj12050145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The present systematic review was performed to assess the application of orally derived stem cells in periodontal regenerative therapy, and because of this, the following PICO question was proposed: "In patients with periodontitis, can the adjunctive use of orally derived stem cells provide additional clinical and radiographic benefits for periodontal regeneration?". Randomized clinical studies were electronically and manually searched up until December 2023. Quantitative analyses were performed with the aim of evaluating the mean differences (MDs) between the treatment and control groups in terms of clinical attachment level (CAL) gain, probing pocket depth (PPD) reduction, gingival recession (GR), and radiographic bone gain (RBG) using random effect models. A total of seven studies were selected for the systematic review. Meta-analyses excluding studies with a high risk of bias highlighted a non-statistically significant result for the use of stem cells when compared to the control groups in terms of CAL gain [MD = 1.05; 95% CI (-0.88, 2.97) p = 0.29] and PPD reduction [MD = 1.32; 95% CI (-0.25, 2.88) p = 0.10]. The same also applied to GR [MD = -0.08; 95% CI (-0.79, 0.63) p = 0.83] and RBG [MD = 0.50; 95% CI (-0.88, 1.88) p = 0.48]. Based on the high heterogeneity, there is not enough evidence to consider the adjunctive application of orally derived mesenchymal stem cells as a preferential approach for periodontal regenerative treatment, as compared to standard procedures.
Collapse
Affiliation(s)
- Alessandro Campagna
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (G.O.); (M.P.)
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
| | - Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
| | - Federico Amoroso
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
- Politecnico di Torino, 10129 Torino, Italy
| | - Federico Mussano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
| | - Giacomo Oteri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (G.O.); (M.P.)
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Torino, Italy; (G.B.); (F.R.); (F.A.); (M.A.)
| | - Matteo Peditto
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (G.O.); (M.P.)
| |
Collapse
|
4
|
Meto A, Sula A, Peppoloni S, Meto A, Blasi E. Leveraging Dental Stem Cells for Oral Health during Pregnancy: A Concise Review. Dent J (Basel) 2024; 12:127. [PMID: 38786525 PMCID: PMC11120089 DOI: 10.3390/dj12050127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Pregnancy induces significant changes in oral health because of hormonal fluctuations, making it a crucial period for preventive measures. Dental stem cells (DSCs), particularly those derived from the dental pulp and periodontal ligaments, offer promising avenues for regenerative therapies and, possibly, preventive interventions. While the use of DSCs already includes various applications in regenerative dentistry in the general population, their use during pregnancy requires careful consideration. This review explores recent advancements, challenges, and prospects in using DSCs to address oral health issues, possibly during pregnancy. Critical aspects of the responsible use of DSCs in pregnant women are discussed, including safety, ethical issues, regulatory frameworks, and the need for interdisciplinary collaborations. We aimed to provide a comprehensive understanding of leveraging DSCs to improve maternal oral health.
Collapse
Affiliation(s)
- Aida Meto
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania;
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (E.B.)
- Department of Conservative Dentistry and Endodontics, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune 411018, Maharashtra, India
| | - Ana Sula
- Department of Obstetrics and Gynecology, American Hospital, 1060 Tirana, Albania;
| | - Samuele Peppoloni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (E.B.)
| | - Agron Meto
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania;
| | - Elisabetta Blasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (E.B.)
| |
Collapse
|
5
|
Bakinowska E, Kiełbowski K, Boboryko D, Bratborska AW, Olejnik-Wojciechowska J, Rusiński M, Pawlik A. The Role of Stem Cells in the Treatment of Cardiovascular Diseases. Int J Mol Sci 2024; 25:3901. [PMID: 38612710 PMCID: PMC11011548 DOI: 10.3390/ijms25073901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and include several vascular and cardiac disorders, such as atherosclerosis, coronary artery disease, cardiomyopathies, and heart failure. Multiple treatment strategies exist for CVDs, but there is a need for regenerative treatment of damaged heart. Stem cells are a broad variety of cells with a great differentiation potential that have regenerative and immunomodulatory properties. Multiple studies have evaluated the efficacy of stem cells in CVDs, such as mesenchymal stem cells and induced pluripotent stem cell-derived cardiomyocytes. These studies have demonstrated that stem cells can improve the left ventricle ejection fraction, reduce fibrosis, and decrease infarct size. Other studies have investigated potential methods to improve the survival, engraftment, and functionality of stem cells in the treatment of CVDs. The aim of the present review is to summarize the current evidence on the role of stem cells in the treatment of CVDs, and how to improve their efficacy.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | | | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| |
Collapse
|
6
|
Bharuka T, Reche A. Advancements in Periodontal Regeneration: A Comprehensive Review of Stem Cell Therapy. Cureus 2024; 16:e54115. [PMID: 38487109 PMCID: PMC10938178 DOI: 10.7759/cureus.54115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Periodontal disease, characterized by inflammation and infection of the supporting structures of teeth, presents a significant challenge in dentistry and public health. Current treatment modalities, while effective to some extent, have limitations in achieving comprehensive periodontal tissue regeneration. This comprehensive review explores the potential of stem cell therapy in advancing the field of periodontal regeneration. Stem cells, including mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), hold promise due to their immunomodulatory effects, differentiation potential into periodontal tissues, and paracrine actions. Preclinical studies using various animal models have revealed encouraging outcomes, though standardization and long-term assessment remain challenges. Clinical trials and case studies demonstrate the safety and efficacy of stem cell therapy in real-world applications, especially in personalized regenerative medicine. Patient selection criteria, ethical considerations, and standardized treatment protocols are vital for successful clinical implementation. Stem cell therapy is poised to revolutionize periodontal regeneration, offering more effective, patient-tailored treatments while addressing the systemic health implications of periodontal disease. This transformative approach holds the potential to significantly impact clinical practice and improve the overall well-being of individuals affected by this prevalent oral health concern. Responsible regulatory compliance and a focus on ethical considerations will be essential as stem cell therapy evolves in periodontal regeneration.
Collapse
Affiliation(s)
- Tanvi Bharuka
- Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Ponnaiyan D, Rughwani RR, Shetty G, Mahendra J. The effect of adjunctive LASER application on periodontal ligament stem cells. Front Cell Dev Biol 2024; 11:1341628. [PMID: 38283989 PMCID: PMC10811063 DOI: 10.3389/fcell.2023.1341628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Periodontal regeneration involves the composite action of cell, scaffolds and signaling molecules. There are numerous autologous sources of regenerative cells which are present close to the vicinity of the periodontally debilitated site, the primary one being the periodontal ligament stem cell, which is believed to have a key role in regeneration. Various methods can be harnessed to optimize and enhance the regenerative potential of PDLSCs such as the application of LASERs. In the last few years there have been various studies which have evaluated the effect of different types of LASERs on PDLSCs and the present review summarizes the photo-biomodulative activity of LASERs in general and its beneficial role in the stimulation of PDLSC specifically.
Collapse
Affiliation(s)
| | | | | | - Jaideep Mahendra
- Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|