1
|
Wang Y, Tian Z, Huang S, Dang N. Tripterygium wilfordii Hook. F. and Its Extracts for Psoriasis: Efficacy and Mechanism. Drug Des Devel Ther 2023; 17:3767-3781. [PMID: 38144417 PMCID: PMC10749103 DOI: 10.2147/dddt.s439534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Psoriasis is an inflammatory autoimmune skin condition that is clinically marked by chronic erythema and scaling. The traditional Chinese herb Tripterygium wilfordii Hook. F. (TwHF) is commonly used in the treatment of immune-related skin illnesses, such as psoriasis. In clinical studies, PASI (Psoriasis Area and Severity Index) were dramatically decreased by TwHF and its extracts. Their benefits for psoriasis also include relief from psoriasis symptoms such as itching, dryness, overall lesion scores and quality of life. And the pathological mechanisms include anti-inflammation, immunomodulation and potentially signaling pathway modulations, which are achieved by modulating type-3 inflammatory cytokines including IL-22, IL-23, and IL-17 as well as immune cells like Th17 lymphocytes, γδT cells, and interfering with IFN-SOCS1, NF-κB and IL- 36α signaling pathways. TwHF and its extracts may cause various adverse drug reactions, such as gastrointestinal responses, aberrant hepatocytes, reproductive issues, and liver function impairment, but at adequate doses, they are regarded as an alternative therapy for the treatment of psoriasis. In this review, the effectiveness and mechanisms of TwHF and its extracts in psoriasis treatment are elucidated.
Collapse
Affiliation(s)
- Yingchao Wang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Zhaochun Tian
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Zhao Y, Hansen NL, Duan YT, Prasad M, Motawia MS, Møller BL, Pateraki I, Staerk D, Bak S, Miettinen K, Kampranis SC. Biosynthesis and biotechnological production of the anti-obesity agent celastrol. Nat Chem 2023; 15:1236-1246. [PMID: 37365337 DOI: 10.1038/s41557-023-01245-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Obesity is a major health risk still lacking effective pharmacological treatment. A potent anti-obesity agent, celastrol, has been identified in the roots of Tripterygium wilfordii. However, an efficient synthetic method is required to better explore its biological utility. Here we elucidate the 11 missing steps for the celastrol biosynthetic route to enable its de novo biosynthesis in yeast. First, we reveal the cytochrome P450 enzymes that catalyse the four oxidation steps that produce the key intermediate celastrogenic acid. Subsequently, we show that non-enzymatic decarboxylation-triggered activation of celastrogenic acid leads to a cascade of tandem catechol oxidation-driven double-bond extension events that generate the characteristic quinone methide moiety of celastrol. Using this acquired knowledge, we have developed a method for producing celastrol starting from table sugar. This work highlights the effectiveness of combining plant biochemistry with metabolic engineering and chemistry for the scalable synthesis of complex specialized metabolites.
Collapse
Affiliation(s)
- Yong Zhao
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Nikolaj L Hansen
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Yao-Tao Duan
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Meera Prasad
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Mohammed S Motawia
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Birger L Møller
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Irini Pateraki
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Bak
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark.
| | - Karel Miettinen
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark.
| | - Sotirios C Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Shin SH, Hur G, Kim NR, Park JHY, Lee KW, Yang H. A machine learning-integrated stepwise method to discover novel anti-obesity phytochemicals that antagonize the glucocorticoid receptor. Food Funct 2023; 14:1869-1883. [PMID: 36723137 DOI: 10.1039/d2fo03466b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As a type of stress hormone, glucocorticoids (GCs) affect numerous physiological pathways by binding to the glucocorticoid receptor (GR) and regulating the transcription of various genes. However, when GCs are dysregulated, the resulting hypercortisolism may contribute to various metabolic disorders, including obesity. Thus, attempts have been made to discover potent GR antagonists that can reverse excess-GC-related metabolic diseases. Phytochemicals are a collection of valuable bioactive compounds that are known for their wide variety of chemotypes. Recently, various computational methods have been developed to obtain active phytochemicals that can modulate desired target proteins. In this study, we developed a workflow comprising two consecutive quantitative structure-activity relationship-based machine learning models to discover novel GR-antagonizing phytochemicals. These two models collectively identified 65 phytochemicals that bind to and antagonize GR. Of these, nine commercially available phytochemicals were validated for GR-antagonist and anti-obesity activities. In particular, we confirmed that demethylzeylasteral, a phytochemical of the Tripterygium wilfordii Radix, exhibits potent anti-obesity activity in vitro through GR antagonism.
Collapse
Affiliation(s)
- Seo Hyun Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Gihyun Hur
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Na Ra Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
4
|
Liao W, Zhang L, Chen X, Xiang J, Zheng Q, Chen N, Zhao M, Zhang G, Xiao X, Zhou G, Zeng J, Tang J. Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154524. [PMID: 36375238 DOI: 10.1016/j.phymed.2022.154524] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are strongly associated with high tumourigenicity, chemotherapy or radiotherapy resistance, and metastasis and recurrence, particularly in colorectal cancer (CRC). Therefore, targeting CSCs may be a promising approach. Recently, discovery and research on phytochemicals that effectively target colorectal CSCs have been gaining popularity because of their broad safety profile and multi-target and multi-pathway modes of action. PURPOSE This review aimed to elucidate and summarise the effects and mechanisms of phytochemicals with potential anti-CSC agents that could contribute to the better management of CRC. METHODS We reviewed PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases from the original publication date to March 2022 to review the mechanisms by which phytochemicals inhibit CRC progression by targeting CSCs and their key signalling pathways. Phytochemicals were classified and summarised based on the mechanisms of action. RESULTS We observed that phytochemicals could affect the biological properties of colorectal CSCs. Phytochemicals significantly inhibit self-renewal, migration, invasion, colony formation, and chemoresistance and induce apoptosis and differentiation of CSCs by regulating the Wnt/β-catenin pathway (e.g., diallyl trisulfide and genistein), the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway (e.g., caffeic acid and piperlongumine), the neurogenic locus notch homolog protein pathway (e.g., honokiol, quercetin, and α-mangostin), the Janus kinase-signal transducer and activator of transcription pathway (e.g., curcumin, morin, and ursolic acid), and other key signalling pathways. It is worth noting that several phytochemicals, such as resveratrol, silibinin, evodiamine, and thymoquinone, highlight multi-target and multi-pathway effects in restraining the malignant biological behaviour of CSCs. CONCLUSIONS This review demonstrates the potential of targeted therapies for colorectal CSCs using phytochemicals. Phytochemicals could serve as novel therapeutic agents for CRC and aid in drug development.
Collapse
Affiliation(s)
- Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Chen
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Juyi Xiang
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhou
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
5
|
Yu J, Wang W, Liu B, Gu J, Chen S, Cui Y, Sun G. Demethylzelasteral inhibits proliferation and EMT via repressing Wnt/β-catenin signaling in esophageal squamous cell carcinoma. J Cancer 2021; 12:3967-3975. [PMID: 34093803 PMCID: PMC8176255 DOI: 10.7150/jca.45493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
As a kind of tumor commonly seen, no effective treatment is available for esophageal squamous cell carcinoma (ESCC). Therefore, seeking a new treatment is urgent. Demethylzeylasteral (T-96) isolated from Tripterygium wilfordii root bark embraces outstanding good antitumor activity. However, as for the mechanism of T-96 work on ESCC cells, it is rarely reported. In this study, we found that T-96 has inhibition when ESCC cells are proliferating, migrating and cloning. Moreover, relevant effects are influenced by dose and time. And T-96 can result in the stop of G2/M phase and induce apoptosis of ESCC cells. In addition, the expressions of Cyclin B1, Cyclin D1, Bcl-2, PARP1 and Survivin were decreased after starch demethylation. Despite of this, Bax and PARP1's expressions went up. To add up, there was an obvious increase in the expression of E-cadherin, while that of N-cadherin, Vimentin and MMP9 decreased after T-96 treatment. Moreover, the expression of Wnt/β-Catenin pathway, which concerns proteins β-Catenin, c-Myc and Wnt3a decreased. Our study shows that T-96 inhibits the proliferation and migration of esophageal cancer cells through Wnt/β-catenin pathway. Moreover, it gives rise to cell cycle arrest and apoptosis. According to the research results, T-96 tends to be put into use when treating ESCC patients, thus laying the experimental foundation for clinical research.
Collapse
Affiliation(s)
- Jiarui Yu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, Hebei 063000, China
| | - Wei Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, Hebei 063000, China
| | - Baolin Liu
- School of clinical medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Jinling Gu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, Hebei 063000, China
| | - Siyuan Chen
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, Hebei 063000, China
| | - Yishuang Cui
- School of clinical medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Guogui Sun
- School of clinical medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China.,Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, Hebei 063000, China
| |
Collapse
|
6
|
Zhang Y, Mao X, Li W, Chen W, Wang X, Ma Z, Lin N. Tripterygium wilfordii: An inspiring resource for rheumatoid arthritis treatment. Med Res Rev 2020; 41:1337-1374. [PMID: 33296090 DOI: 10.1002/med.21762] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
Tripterygium wilfordii Hook F (TwHF)-based therapy is among the most efficient and crucial therapeutics for the treatment of rheumatoid arthritis (RA), which indicates that TwHF is a potential source of novel anti-RA drugs. However, accumulating studies have observed that TwHF-based therapy induces multi-organ toxicity, which prevents the wide use of this herb in clinical practice, although several recent studies have attempted to reduce the toxicity of TwHF. Notably, our research group developed a "Clinical Practice Guideline for Tripterygium Glycosides/Tripterygium wilfordii Tablets in the Treatment of Rheumatoid Arthritis" (No. T/CACM 1337-2020) approved by the China Association of Chinese Medicine to standardize the clinical application of TwHF-based therapy and thus avoid adverse effects. Although great strides have been made toward the characterization of TwHF-based therapy and revealing its underlying pharmacological and toxicological mechanisms, several crucial gaps in knowledge remain as potential barriers to enhance its therapeutic effects on the premise of safety assurance. This review offers a global view of TwHF, ranging from its chemical constituents, quality control, clinical observations, and underlying pharmacological mechanisms to toxic manifestations and mechanisms. We focus on the important and emerging aspects of this field and highlight the major challenges and strategies for using novel techniques and approaches to gain new insights into unresolved questions. We hope that this review will improve the understanding of TwHF application and draw increasing interdisciplinary attention from clinicians that practice both Chinese and Western medicine, basic researchers, and computer scientists.
Collapse
Affiliation(s)
- Yanqiong Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Mao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijie Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjia Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhaochen Ma
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Lin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Ru Y, Li H, Zhang R, Luo Y, Song J, Kuai L, Xing M, Hong S, Sun X, Ding X, Lu Y, Liu L, Na C, Zhou Y, Li B, Li X. Role of keratinocytes and immune cells in the anti-inflammatory effects of Tripterygium wilfordii Hook. f. in a murine model of psoriasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153299. [PMID: 32823074 DOI: 10.1016/j.phymed.2020.153299] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tripterygium wilfordii Hook. f. (TwHf) belonging to the Celastraceae family is widely used for psoriasis treatment, especially in topical therapy in Chinese traditional medicine. PURPOSE In this study, we investigated the anti-psoriatic effects of topical administration of Tripterygium wilfordii Hook. f. root decoction (TwHf-RD), as well as its safety and potential mechanisms of action in vivo and in vitro. METHODS Psoriasis-like lesions were induced in mice using imiquimod (IMQ). The liver and kidney function and the pathological changes in the liver, kidney, and spleen were measured using ELISA and hematoxylin and eosin (H&E) staining after TwHf-RD treatment. H&E staining was used to determine the optimum concentration of TwHf-RD. The expression levels of ki67 and apoptosis related-factors in vivo and in vitro were measured by immunohistochemical staining, flow cytometry, and western blotting. Immunocyte differentiation and pro-inflammatory cytokine (IL-17A, IL-17F, IL-10, IL-22, IL-23, IFN-γ, and TNF-α) expression levels were determined by flow cytometry and RT-qPCR. RESULTS TwHf-RD treatment attenuated skin inflammation, inhibited keratinocyte (KC) proliferation, increased the levels of apoptosis factors, and influenced the differentiation and inflammatory response of T lymphocytes and regulatory T cells in mice. In vitro experiments proved that Tripterygium wilfordii Hook. f. root extract (TwHf-RE) regulates the proliferation and apoptosis of PAM212 cells. CONCLUSION TwHf-RD alleviates IMQ-induced psoriasis lesions by regulating the proliferation and apoptosis of KC and immune cells and by inhibiting immunocyte differentiation and pro-inflammatory cytokine expression.
Collapse
MESH Headings
- Administration, Topical
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/immunology
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cytokines/metabolism
- Dermatologic Agents/administration & dosage
- Dermatologic Agents/chemistry
- Dermatologic Agents/immunology
- Dermatologic Agents/pharmacology
- Disease Models, Animal
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Imiquimod/toxicity
- Keratinocytes/drug effects
- Male
- Mice, Inbred BALB C
- Plant Roots/chemistry
- Psoriasis/chemically induced
- Psoriasis/drug therapy
- Psoriasis/immunology
- Psoriasis/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Tripterygium/chemistry
Collapse
Affiliation(s)
- Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongjin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruoxi Zhang
- Research Laboratory of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiankun Song
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Meng Xing
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Seokgyeong Hong
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaojie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Na
- Department of Dermatology, Weihai Hospital of Traditional Chinese Medicine, Shandong 264200, China
| | - Yaqiong Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Zhang D, Lyu JT, Zhang B, Zhang XM, Jiang H, Lin ZJ. Comparative efficacy, safety and cost of oral Chinese patent medicines for rheumatoid arthritis: a Bayesian network meta-analysis. BMC Complement Med Ther 2020; 20:210. [PMID: 32631398 PMCID: PMC7339567 DOI: 10.1186/s12906-020-03004-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/26/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common inflammatory disease with a substantial burden for society and economic worldwide. Chinese patent medicines (CPMs) have gained attention as alternative remedies due to they can exert the satisfactory therapeutic effects via holistic regulation. Currently, several oral Chinese patent medicines are routinely recommended for managing and treating RA. Therefore, a network meta-analysis (NMA), which tries to synthesize evidences for a decision making by evaluating the comparative effectiveness of multiple interventions against the same disease, was undertaken to identify the optimal intervention according to their efficacy in clinical treatment and symptom remission, safety profile and daily cost. METHODS Randomized controlled trials (RCTs) regarding CPMs to treat RA were comprehensive retrieved from 3 foreign databases and 4 Chinese databases, and the retrieved results were last updated on January 10, 2019. The bias of the selected trials was assessed by two individuals independently through RoB2. A random-effects model was adopted during the meta-analytic procedures, and outcomes concerning efficacy and safety were evaluated as odds ratios (OR), mean differences (MD) and 95% credible intervals (CI) utilizing Stata 14.1 and WinBUGS 1.4.3 software. Furthermore, the cluster analysis and comprehensive investigation were preformed concerning the comparative efficacy, safety and cost of oral CPMs. RESULTS One hundred sixteen RCTs involving 10,213 individuals met the inclusion criteria and were enrolled into current NMA. The results from existing evidence indicated that Biqi capsule and Yuxuebi capsule probably had a favorable balance in consideration of benefits, tolerability and daily cost. Furthermore, as the least expensive choice, glucosides of Tripterygium Wilfordii tablet was associated with displaying a trend of relieving joint tenderness, joint swelling, and morning stiffness for patients with RA. CONCLUSION Biqi capsule, Yuxuebi capsule and glucosides of Tripterygium Wilfordii tablet were recommended for treating RA based on the favorable benefits in both clinical efficacy and symptoms, and they, meanwhile, might be associated with the more tolerable and acceptable therapeutic alternative in terms of safety profile and daily cost. Nevertheless, the additional results from high-quality, multi-center and head-to-head trials would be pivotal for supporting our findings.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jin-Tao Lyu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Bing Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiao-Meng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hao Jiang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhi-Jian Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
9
|
Ru Y, Luo Y, Zhou Y, Kuai L, Sun X, Xing M, Liu L, Lu Y, Hong S, Chen X, Song J, Luo Y, Fei X, Li B, Li X. Adverse Events Associated With Treatment of Tripterygium wilfordii Hook F: A Quantitative Evidence Synthesis. Front Pharmacol 2019; 10:1250. [PMID: 31780926 PMCID: PMC6851843 DOI: 10.3389/fphar.2019.01250] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Background:Tripterygium wilfordii Hook F can cause adverse effects (AEs) in clinical application and may be harmful to human health. This study aim to summarize the AEs caused by T. wilfordii tgpolyglycoside (TWP), the most common preparation of T. wilfordii Hook F for clinical use. Methods: The Cochrane Library, EMBASE, PubMed, and Web of Science were searched to identify potential articles on this topic. All single-arm trials, controlled clinical trials, and randomized controlled trials were selected and summarized. Meta-regression was used to determine the sources of heterogeneity, and subgroups were used to identify factors leading to AEs. Results: Forty-six studies, comprising 25 randomized controlled trials, 13 controlled clinical trials, and 8 single-arm trials, were included in this meta-analysis, representing 2437 enrolled TWP-treated participants. Combined intervention, drug dosage, medication treatment, pharmaceutical manufacturers, and specific organ toxicity were identified as potential factors leading to TWP-induced AEs in this meta-analysis. In patients treated with TWP, the global incidence of AEs was 30.75% (95% confidence interval [21.18–40.33], I2 = 97%), and that of severe grade AEs was 4.68% (95% confidence interval [0.00–12.72], I2 = 53%). Organ-specific analyses indicated that TWP treatment elicited intestinal toxicity, reproductive toxicity, hepatotoxicity, nephrotoxicity, hematotoxicity, cutaneous toxicity, and other damages. The AEs analyzed in the subgroups of combined intervention, drug dosage, medication treatment, and pharmaceutical manufacturers were considered as primary outcomes, and organic-specific AEs were considered as secondary outcomes. Conclusions: The occurrence of TWP-induced AEs was systemic, organ-specific, and related to medication course, combined intervention, and drug dosage.
Collapse
Affiliation(s)
- Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yaqiong Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Sun
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Meng Xing
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Seokgyeong Hong
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xi Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jiankun Song
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yue Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoya Fei
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Abstract
OBJECTIVE Celastrol, a major active constituent of Tripterygium wilfordii, has antioxidant, anti-inflammatory, and anticancer effects. However, whether celastrol can exert protective effect on myocardial ischemia-reperfusion injury (MIRI) is unknown. The aim of this study was to test the protective effect of celastrol on MIRI and elucidate its underlying mechanism. METHODS Cardiomyocytes (H9c2 cells) were subjected to hypoxia for 8 h followed by reoxygenation for 4 h to create hypoxia/reoxygenation (H/R) model, an in vitro MIRI model. Celastrol was added to the medium 60 min before the H/R process . Cell viability was detected using MTT assay. Myocardial injury was evaluated by measuring lactate dehydrogenase (LDH) and creatine kinase MB isoenzyme (CK-MB) activity. Changes in mRNA and protein expression of TNF-α, IL-1ß, and nuclear factor-K B (NF-K B) were measured with RT-qPCR assay and western blot analysis. RESULTS Results showed that low-dose celastrol (20 and 50 nM) treatment significantly increased cell viability and decreased LDH and CK-MB activity in the condition of H/R, but high-dose celastrol (200 and 400 nM) resulted in extra injury to cardiomyocytes. Moreover, treatment with 50 nM celastrol significantly downregulated mRNA and protein expression of TNF-α and IL-1ß. Meanwhile, NF-K B mRNA and protein in the nucleus were also correspondingly reduced. CONCLUSION Our study demonstrated that low-dose celastrol could prevent MIRI in cardiomyocytes by inhibiting the activation of NF-K B, and celastrol may be a potential therapeutic agent for preventing MIRI.
Collapse
|
11
|
Guo Y, Wang Y, Shi X, Qin W, Zhang X, Xu J, Liu X, Yang D, Yang Y. A metabolomics study on the immunosuppressive effect of Tripterygium hypoglaucum (Levl.) Hutch in mice: The discovery of pathway differences in serum metabolites. Clin Chim Acta 2018; 483:94-103. [DOI: 10.1016/j.cca.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
|
12
|
Detoxication mechanisms of Radix Tripterygium wilfordii via compatibility with Herba Lysimachia christinae in S180-bearing mice by involving Nrf2. Biosci Rep 2018; 38:BSR20180429. [PMID: 29950302 PMCID: PMC6043720 DOI: 10.1042/bsr20180429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
The combined administration between Radix Tripterygium wilfordii Hook F (LGT) and Herba Lysimachia christinae Hance (JQC) belongs to mutual detoxication compatibility of seven emotions in traditional Chinese medicine (TCM) theory. However, until now, the compatibility detoxication mechanisms remain unknown. The present study was undertaken to observe detoxication mechanisms of LGT through compatibility with JQC in tumor-bearing mice by involving NF-E2-related factor 2 (Nrf2)-mediated antioxidant defenses. In addition, influence of compatibility on antitumor activity was also investigated here. Our results demonstrated that compatibility with JQC administration significantly reversed LGT-elevated serum alanine/aspartate transaminase (ALT/AST) levels and alleviated hepatocytes’ swelling or degeneration damage, and at the ratio 2/1 (LGT/JQC) produced the strongest detoxication effect. Besides, compatibility with JQC administration reversed not only LGT-elevated hepatic malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α) but also the LGT lowered GSH, glutathione-s transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and interleukin (IL)-10 levels. Furthermore, compatibility with JQC administration significantly up-regulated protein expression of Nrf2 and mRNA expression of it regulated downstream antioxidant genes such as heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase-1 (NQO1), and glutamate cysteine ligase catalytic subunit (GCLC). In addition, compatibility with JQC further decreased LGT-decreased tumor weight and at the ratio 2/1 (LGT/JQC) also exerted the strongest synergistic effect. Collectively, through compatibility with JQC exerted detoxication effect on LGT-induced hepatotoxicity and the mechanisms could be at least partly attributed to up-regulation of Nrf2 and its downstream signals, thereby enhancing antioxidant defenses, and inhibiting lipid peroxidation, oxidative stress, and inflammation. Additionally, at the ratio 2/1 (LGT/JQC) exerted the strongest effects on both detoxication and synergism.
Collapse
|
13
|
Ontology-based systematic representation and analysis of traditional Chinese drugs against rheumatism. BMC SYSTEMS BIOLOGY 2017; 11:130. [PMID: 29322929 PMCID: PMC5763303 DOI: 10.1186/s12918-017-0510-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Rheumatism represents any disease condition marked with inflammation and pain in the joints, muscles, or connective tissues. Many traditional Chinese drugs have been used for a long time to treat rheumatism. However, a comprehensive information source for these drugs is still missing, and their anti-rheumatism mechanisms remain unclear. An ontology for anti-rheumatism traditional Chinese drugs would strongly support the representation, analysis, and understanding of these drugs. Results In this study, we first systematically collected reported information about 26 traditional Chinese decoction pieces drugs, including their chemical ingredients and adverse events (AEs). By mostly reusing terms from existing ontologies (e.g., TCMDPO for traditional Chinese medicines, NCBITaxon for taxonomy, ChEBI for chemical elements, and OAE for adverse events) and making semantic axioms linking different entities, we developed the Ontology of Chinese Medicine for Rheumatism (OCMR) that includes over 3000 class terms. Our OCMR analysis found that these 26 traditional Chinese decoction pieces are made from anatomic entities (e.g., root and stem) from 3 Bilateria animals and 23 Mesangiospermae plants. Anti-inflammatory and antineoplastic roles are important for anti-rheumatism drugs. Using the total of 555 unique ChEBI chemical entities identified from these drugs, our ChEBI-based classification analysis identified 18 anti-inflammatory, 33 antineoplastic chemicals, and 9 chemicals (including 3 diterpenoids and 3 triterpenoids) having both anti-inflammatory and antineoplastic roles. Furthermore, our study detected 22 diterpenoids and 23 triterpenoids, including 16 pentacyclic triterpenoids that are likely bioactive against rheumatism. Six drugs were found to be associated with 184 unique AEs, including three AEs (i.e., dizziness, nausea and vomiting, and anorexia) each associated with 5 drugs. Several chemical entities are classified as neurotoxins (e.g., diethyl phthalate) and allergens (e.g., eugenol), which may explain the formation of some TCD AEs. The OCMR could be efficiently queried for useful information using SPARQL scripts. Conclusions The OCMR ontology was developed to systematically represent 26 traditional anti-rheumatism Chinese drugs and their related information. The OCMR analysis identified possible anti-rheumatism and AE mechanisms of these drugs. Our novel ontology-based approach can also be applied to systematic representation and analysis of other traditional Chinese drugs. Electronic supplementary material The online version of this article (10.1186/s12918-017-0510-5) contains supplementary material, which is available to authorized users.
Collapse
|