1
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
2
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
3
|
Frandsen J, Narayanasamy P. Effect of Cannabidiol on the Neural Glyoxalase Pathway Function and Longevity of Several C. elegans Strains Including a C. elegans Alzheimer's Disease Model. ACS Chem Neurosci 2022; 13:1165-1177. [PMID: 35385645 DOI: 10.1021/acschemneuro.1c00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cannabidiol is a nonpsychoactive phytocannabinoid produced by the Cannabis sativa plant and possesses a wide range of pharmacological activities, including anti-inflammatory, antioxidant, and neuroprotective activities. Cannabidiol functions in a neuroprotective manner, in part through the activation of cellular antioxidant pathways. The glyoxalase pathway detoxifies methylglyoxal, a highly reactive metabolic byproduct that can accumulate in the brain, and contributes to the severity of neurodegenerative diseases, including Alzheimer's disease. While cannabidiol's antioxidant properties have been investigated, it is currently unknown how it may modulate the glyoxalase pathway. In this research paper, we examine the effects of Cannabidiol on cerebellar neurons and in several Caenorhabditis elegans strains. We determined that a limited amount of Cannabidiol can prevent methylglyoxal-mediated cellular damage through enhancement of the neural glyoxalase pathway and extend the lifespan and survival of C. elegans, including a transgenic C. elegans strain modeling Alzheimer's disease.
Collapse
Affiliation(s)
- Joel Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
4
|
Li H, Lei T, Zhang J, Yan Y, Wang N, Song C, Li C, Sun M, Li J, Guo Y, Yang J, Kang T. Longan (Dimocarpus longan Lour.) Aril ameliorates cognitive impairment in AD mice induced by combination of D-gal/AlCl 3 and an irregular diet via RAS/MEK/ERK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113612. [PMID: 33249246 DOI: 10.1016/j.jep.2020.113612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the theory of traditional Chinese medicine (TCM), Alzheimer's disease (AD) is identified as "forgetfulness" or "dementia", and it can be caused by spleen deficiency. Longan Aril (the aril of Dimocarpus longan Lour., LA) is a kind of Chinese medicine, and it can improve intelligence attributed to entering the spleen-meridian. This study aimed to explore the therapeutic effects of LA on AD mice with spleen deficiency, and to understand anti-AD mechanism of LA. MATERIAL AND METHODS A mouse model of AD with spleen deficiency was established by D-gal (140 mg/kg, intraperitoneal injection) and AlCl3 (20 mg/kg, intragastrical administration) in combination with an irregular diet for 60 days, in which mice in LA group were daily given LA (0.5, 1.0 or 2.0 g/kg). The anti-AD effects of LA were evaluated by the Morris water maze, enzyme-linked immunosorbent assay (ELISA), hematoxylin and eosin (H&E), Nissl, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The anti-AD mechanism of LA was studied by using metabolomics, and the expressions of RAS/MEK/extracellular signal-regulated kinase (ERK) signaling pathway-related proteins were detected by Western blotting. RESULTS LA improved learning and memory abilities, superoxide dismutase (SOD) level, and form and number of Nissl bodies, while reduced the levels of Aβ42, phosphorylated-tau (p-tau), reactive oxygen species (ROS), malondialdehyde (MDA), monoamine oxidase-B (MAO-B), histological injury, and apoptosis rate in AD group (P < 0.05, P < 0.01 or P < 0.001). The anti-AD mechanism of LA may be related to RAS/MEK/ERK and other signaling pathways, in which the expressions of RAS/MEK/ERK signaling pathway-related proteins significantly reduced (P < 0.05 or P < 0.01). CONCLUSIONS LA could improve the cognitive ability and reduce the pathologic impairment in AD mice, which might be partly mediated via inhibition of RAS/MEK/ERK singling pathway.
Collapse
Affiliation(s)
- Hongyan Li
- The Ministry of National Education Key Lab for TCM Visceral Manifestations Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China; Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Tianrong Lei
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jianghua Zhang
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yuhui Yan
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Nan Wang
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Cheng Song
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Chang Li
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Mingyu Sun
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jinyu Li
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Yuxin Guo
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jingxian Yang
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Tingguo Kang
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| |
Collapse
|
5
|
Boniface PK, Elizabeth FI. Flavones as a Privileged Scaffold in Drug Discovery: Current Developments. Curr Org Synth 2020; 16:968-1001. [PMID: 31984880 DOI: 10.2174/1570179416666190719125730] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Flavones are one of the main subclasses of flavonoids with diverse pharmacological properties. They have been reported to possess antimalarial, antimicrobial, anti-tuberculosis, anti-allergic, antioxidant, anti-inflammatory activities, among others. OBJECTIVE The present review summarizes the recent information on the pharmacological properties of naturally occurring and synthetic flavones. METHODS Scientific publications referring to natural and synthetic flavones in relation to their biological activities were hand-searched in databases such as SciFinder, PubMed (National Library of Medicine), Science Direct, Wiley, ACS, SciELO, Springer, among others. RESULTS As per the literature, seventy-five natural flavones were predicted as active compounds with reference to their IC50 (<20 µg/mL) in in vitro studies. Also, synthetic flavones were found active against several diseases. CONCLUSION As per the literature, flavones are important sources for the potential treatment of multifactorial diseases. However, efforts toward the development of flavone-based therapeutic agents are still needed. The appearance of new catalysts and chemical transformations is expected to provide avenues for the synthesis of unexplored flavones, leading to the discovery of flavones with new properties and biological activities.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Nouri M, Farajdokht F, Torbati M, Ranjbar F, Hamedyazdan S, Araj-khodaei M, Sadigh-Eteghad S. A Close Look at Echium amoenum Processing, Neuroactive Components, and Effects on Neuropsychiatric Disorders. Galen Med J 2019; 8:e1559. [PMID: 34466529 PMCID: PMC8343809 DOI: 10.31661/gmj.v8i0.1559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/21/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
Pharmacological researches in the area of herbal medicine have considerably increased over the last two centuries. Echium amoenum (known as Gol-e-Gavzaban in Persian) is a medicinal plant that has been widely used in Iranian folk medicine. In this review, databases including PubMed, Scopus, and Google Scholar were searched up. Data collecting was completed by January 2019 and available scientific reports regarding the processing methods, main chemical constituents, and effects of E. amoenum on different neuropsychiatric disorders are summarized. Thirteen five studies met the inclusion criteria. According to results, the important phytochemicals of the plant was phenolic compounds, fatty acids, rosmarinic acid, anthocyanidins, and flavonoids. Also, experimental and clinical studies demonstrated the effectiveness of E. amoenum in the treatment of several neuropsychiatric disorders such as anxiety, depression, ischemic stroke, seizure, Alzheimer's disease, and pain. Many of these effects are, at least in part, due to its rosmarinic acid or polyphenolic compounds such as flavonoids and natural pigments such as anthocyanins. Also, fatty acids such as gamma-linolenic acid play critical role in neuroactive properties of this herb. Among these effects, only the antidepressant and anxiolytic properties of the plant extract have been examined both experimentally and clinically. There was some controversy over its toxicity effects. It seems that E. amoenum protects neurons via attenuation of oxidative stress and inflammation as well as blocking of apoptosis in the nervous system. However, more studies are necessary for assessing exact mechanisms of action in neuropsychiatric disorders, finding of bioactive ingredients, and processing methods of this plant.
Collapse
Affiliation(s)
- Mohammad Nouri
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ranjbar
- Psychiatry Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hamedyazdan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-khodaei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Liu X, Xu H, Zhang Y, Wang P, Gao W. Brusatol inhibits amyloid‐β‐induced neurotoxicity in U‐251 cells via regulating the Nrf2/HO‐1 pathway. J Cell Biochem 2019; 120:10556-10563. [PMID: 30629288 DOI: 10.1002/jcb.28341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Xin Liu
- Department of Neurology ZouCheng Branch of Affiliated Hospital of Jining Medical University Jining Shandong China
| | - HuaWen Xu
- Department of Neurosurgery ZouCheng Branch of Affiliated Hospital of Jining Medical University Jining Shandong China
| | - YueQi Zhang
- Department of Neurology WeiFang People's Hospital WeiFang Shandong China
| | - Peng Wang
- Department of Neurology LiaoCheng Third People's Hospital LiaoCheng Shandong China
| | - Wei Gao
- Department of Neurology ZouCheng Branch of Affiliated Hospital of Jining Medical University Jining Shandong China
| |
Collapse
|
8
|
Bartolotti N, Disouky A, Kalinski A, Elmann A, Lazarov O. Phytochemicals from Achillea fragrantissima are Modulators of AβPP Metabolism. J Alzheimers Dis 2018; 66:1425-1435. [PMID: 30400087 DOI: 10.3233/jad-180068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plant derivatives offer a novel and natural source of therapeutics. The desert plant Achillea fragrantissima (Forssk) Sch. Bip (Af) is characterized by protective antioxidative and anti-inflammatory properties. Here, we examined the effect of two Af-derived phytochemicals on learning and memory, amyloid-β protein precursor (AβPP) metabolism, and tau phosphorylation in the familial Alzheimer's disease-linked APPswe/PS1ΔE9 mouse model. We observed that mice that were injected with the phytochemicals showed a trend of improvement, albeit statistically insignificant, in the Novel Object Recognition task. However, we did not observe improvement in contextual fear conditioning, suggesting that the benefits of treatment may be either indirect or task-specific. In addition, we observed an increase in the full-length form of AβPP in the brains of mice treated with Af-derived phytochemicals. Interestingly, both in vivo and in vitro, there was no change in levels of soluble Aβ, oligomeric Aβ, or the carboxyl terminus fragments of AβPP (APP-CTFs), suggesting that the increase in full length AβPP does not exacerbate AβPP pathology, but may stabilize the full-length form of the molecule. Together, our data suggest that phytochemicals present in Af may have a modest positive impact on the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Nancy Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Ahmed Disouky
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Arthur Kalinski
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Anat Elmann
- Department of Food Quality and Safety, Volcani Center, Agricultural Research Organization, Rishon Lezion, Israel
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Vauzour D, Corsini S, Müller M, Spencer JP. Inhibition of PP2A by hesperetin may contribute to Akt and ERK1/2 activation status in cortical neurons. Arch Biochem Biophys 2018; 650:14-21. [DOI: 10.1016/j.abb.2018.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 01/09/2023]
|