1
|
Zhang YZ, Fan ML, Zhang WZ, Liu W, Li HP, Ren S, Jiang S, Song MJ, Wang Z, Li W. Schisandrin ameliorates diabetic nephropathy via regulating of PI3K/Akt/NF-κB-mediated inflammation and TGF-β1-induced fibrosis in HFD/STZ-induced C57BL/6J mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
2
|
Kim DH, Bang E, Ha S, Jung HJ, Choi YJ, Yu BP, Chung HY. Organ-differential Roles of Akt/FoxOs Axis as a Key Metabolic Modulator during Aging. Aging Dis 2021; 12:1713-1728. [PMID: 34631216 PMCID: PMC8460295 DOI: 10.14336/ad.2021.0225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
FoxOs and their post-translational modification by phosphorylation, acetylation, and methylation can affect epigenetic modifications and promote the expression of downstream target genes. Therefore, they ultimately affect cellular and biological functions during aging or occurrence of age-related diseases including cancer, diabetes, and kidney diseases. As known for its key role in aging, FoxOs play various biological roles in the aging process by regulating reactive oxygen species, lipid accumulation, and inflammation. FoxOs regulated by PI3K/Akt pathway modulate the expression of various target genes encoding MnSOD, catalases, PPARγ, and IL-1β during aging, which are associated with age-related diseases. This review highlights the age-dependent differential regulatory mechanism of Akt/FoxOs axis in metabolic and non-metabolic organs. We demonstrated that age-dependent suppression of Akt increases the activity of FoxOs (Akt/FoxOs axis upregulation) in metabolic organs such as liver and muscle. This Akt/FoxOs axis could be modulated and reversed by antiaging paradigm calorie restriction (CR). In contrast, hyperinsulinemia-mediated PI3K/Akt activation inhibited FoxOs activity (Akt/FoxOs axis downregulation) leading to decrease of antioxidant genes expression in non-metabolic organs such as kidneys and lungs during aging. These phenomena are reversed by CR. The results of studies on the process of aging and CR indicate that the Akt/FoxOs axis plays a critical role in regulating metabolic homeostasis, redox stress, and inflammation in various organs during aging process. The benefical actions of CR on the Akt/FoxOs axis in metabolic and non-metabolic organs provide further insights into the molecular mechanisms of organ-differential roles of Akt/FoxOs axis during aging.
Collapse
Affiliation(s)
- Dae Hyun Kim
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - EunJin Bang
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Sugyeong Ha
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Hee Jin Jung
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Yeon Ja Choi
- 2Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea
| | - Byung Pal Yu
- 3Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Hae Young Chung
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| |
Collapse
|
3
|
Zhou W, Dai Y, Meng J, Wang P, Wu Y, Dai L, Zhang M, Yang X, Xu S, Sui F, Huo H. Network pharmacology integrated with molecular docking reveals the common experiment-validated antipyretic mechanism of bitter-cold herbs. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114042. [PMID: 33775806 DOI: 10.1016/j.jep.2021.114042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bitter-cold herbs have been used to clearing heat and expelling damp in clinical practice in China for thousands of years. AIM OF THE STUDY This study aimed to investigate the common molecular mechanism of bitter-cold herbs through network pharmacology analysis, molecular docking and experimental validation in vivo. MATERIALS AND METHODS Network pharmacological analysis integrated with molecular docking was employed to identify the active compounds and core action targets of the bitter-cold herbs. Then, the yeast-induced pathological model was established, and the antipyretic effect of the herbs was evaluated by checking rectal temperatures of the mice hourly. Lastly, the protein expression of core targets was examined to reveal the antipyretic mechanism. RESULTS A total of 52 lead compounds from the four bitter-cold herbs, Phellodendri Chinensis Cortex (PCC), Sophorae Flavescentis Radix (SFR), Gentianae Radix Et Rhozima (GRER) and Coptidis Rhizoma (CR), and 248 compounds-related targets were screened out with PTGS2 ranking the first. The results from molecular docking showed that 22 compounds adopted the same orientation as aspirin and had an excellent stability in the active site pocket of PTGS2. Furthermore, these herbs exerted potential therapeutic effects through 38 related pathways. On the other hand, the outcome of animal experiments showed that they could significantly attenuate the yeast-induced mice fever with dose-dependent relationship. Further experimental results demonstrated that administration of yeast suspension raised protein expression of PTGS2 significantly, which was evidently inhibited in the high or low-dose groups of GRER as well as in the low-dose group of SFR (P < 0.01) though a higher expression of PTGS2 was shown in the low-dose group of CR compared with FM group (P < 0.01). CONCLUSIONS The bitter-cold herbs can alleviate fever response and their antipyretic effect may mainly be attributed to regulating the expression of PTGS2 after the formation of ligand-receptor/PTGS2 complexes, and their active compounds might be nominated as antipyretic lead-ligand candidates.
Collapse
Affiliation(s)
- Weiwei Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yifei Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Miao Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiujuan Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shujun Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hairu Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Lian D, Liu J, Han R, Jin J, Zhu L, Zhang Y, Huang Y, Wang X, Xian S, Chen Y. Kakonein restores diabetes-induced endothelial junction dysfunction via promoting autophagy-mediated NLRP3 inflammasome degradation. J Cell Mol Med 2021; 25:7169-7180. [PMID: 34180143 PMCID: PMC8335672 DOI: 10.1111/jcmm.16747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
In diabetes‐induced complications, inflammatory‐mediated endothelial dysfunction is the core of disease progression. Evidence shows that kakonein, an isoflavone common in Pueraria, can effectively treat diabetes and its complications. Therefore, we explored whether kakonein protects cardiovascular endothelial function by inhibiting inflammatory responses. In this study, C57BL/6J mice were injected with streptozocin to establish a diabetes model and treated with kakonein or metformin for 7 days. The protective effect of kakonein on cardiovascular endothelial junctions and NLRP3 inflammasome activation was verified through immunofluorescence and ELISA assay. In addition, the regulation of autophagy on the NLRP3 inflammasome was investigated through Western blot, immunofluorescence and RT‐qPCR. Results showed that kakonein restored the function of endothelial junctions and inhibited the assembly and activation of the NLRP3 inflammasome. Interestingly, kakonein decreased the expression of NLRP3 inflammasome protein by not reducing the transcriptional levels of NLRP3 and caspase‐1. Kakonein activated autophagy in an AMPK‐dependent manner, which reduced the activation of the NLRP3 inflammasome. In addition, kakonein inhibited both hyperglycaemia‐induced cardiovascular endothelial junction dysfunction and NLRP3 inflammasome activation, similar to autophagy agonist. Our findings indicated that kakonein exerts a protective effect on hyperglycaemia‐induced chronic vascular disease by regulating the NLRP3 inflammasome through autophagy.
Collapse
Affiliation(s)
- Dawei Lian
- The First Affiliated Hospital and Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaying Liu
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruifang Han
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqi Jin
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong Zhang
- Department of Traditional Chinese Medicine, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yi Huang
- Department of Stomatology, The School of Dental Medicine, Jinan University First Affiliated Hospital, Guangzhou, China
| | - Xiao Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaoxiang Xian
- The First Affiliated Hospital and Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Xia ZH, Zhang SY, Chen YS, Li K, Chen WB, Liu YQ. Curcumin anti-diabetic effect mainly correlates with its anti-apoptotic actions and PI3K/Akt signal pathway regulation in the liver. Food Chem Toxicol 2020; 146:111803. [PMID: 33035629 DOI: 10.1016/j.fct.2020.111803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/30/2023]
Abstract
This study aimed to investigate the therapeutic effect of curcumin on type 2 diabetes and its underlying mechanisms. A type 2 diabetes mellitus rat model was established by providing high-fat diet and low doses of streptozotocin. Type 2 diabetes mellitus rats were treated with low dose and high dose of curcumin for 8 weeks. The results showed that high-dose curcumin significantly reduced fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase, liver coefficient, and malondialdehyde levels, and BCL2-Associated X expression in the type 2 diabetes mellitus rats. High-dose curcumin increased the levels of liver superoxide dismutase, catalase, and glutathione; as well as the expression of liver B-cell lymphoma-2, phosphatidylinositol 3-kinase, phosphorylated phosphatidylinositol 3-kinase, protein kinase B, and phosphorylated protein kinase B in type 2 diabetes mellitus rats. Furthermore, it ameliorated the histological structure of the liver and pancreas in diabetes mellitus model rats. However, low-dose curcumin had no significant effect on diabetes mellitus model rats. The results suggest that adequate doses of curcumin controls type 2 diabetes mellitus development as well as the mechanism involved in its anti-apoptotic actions and phosphatidylinositol 3-hydroxy kinase/protein kinase B signal pathway regulation in the liver.
Collapse
Affiliation(s)
- Zhen-Hong Xia
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sai-Ya Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu-Si Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ke Li
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wen-Bo Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Khokhar M, Roy D, Modi A, Agarwal R, Yadav D, Purohit P, Sharma P. Perspectives on the role of PTEN in diabetic nephropathy: an update. Crit Rev Clin Lab Sci 2020; 57:470-483. [PMID: 32306805 DOI: 10.1080/10408363.2020.1746735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phosphatase and tensin homolog (PTEN) is a potent tumor suppressor gene that antagonizes the proto-oncogenic phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway and governs basic cellular metabolic processes. Recently, its role in cell growth, metabolism, architecture, and motility as an intramolecular and regulatory mediator has gained widespread research interest as it applies to non-tumorous diseases, such as insulin resistance (IR) and diabetic nephropathy (DN). DN is characterized by renal tubulointerstitial fibrosis (TIF) and epithelial-mesenchymal transition (EMT), and PTEN plays a significant role in the regulation of both. Epigenetics and microRNAs (miRNAs) are novel players in post-transcriptional regulation and research evidence demonstrates that they reduce the expression of PTEN by acting as key regulators of autophagy and TIF through activation of the Akt/mammalian target of rapamycin (mTOR) signaling pathway. These regulatory processes might play an important role in solving the complexities of DN pathogenesis and IR, as well as the therapeutic management of DN with the help of PTEN K27-linked polyubiquitination. Currently, there are no comprehensive reviews citing the role PTEN plays in the development of DN and its regulation via miRNA and epigenetic modifications. The present review explores these facets of PTEN in the pathogenesis of IR and DN.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Riddhi Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Dharmveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
7
|
Lu Z, Zhong Y, Liu W, Xiang L, Deng Y. The Efficacy and Mechanism of Chinese Herbal Medicine on Diabetic Kidney Disease. J Diabetes Res 2019; 2019:2697672. [PMID: 31534972 PMCID: PMC6732610 DOI: 10.1155/2019/2697672] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes and is one of the main causes of end-stage renal disease (ESRD) in many countries. The pathological features of DKD are the hypertrophy of mesangial cells, apoptosis of podocytes, glomerular basement membrane (GBM) thickening, accumulation of extracellular matrix (ECM), glomerular sclerosis, and tubulointerstitial fibrosis. The etiology of DKD is very complicated and many factors are involved, such as genetic factors, hyperglycemia, hypertension, hyperlipidemia, abnormalities of renal hemodynamics, and metabolism of vasoactive substances. Although some achievements have been made in the exploration of the pathogenesis of DKD, the currently available clinical treatment methods are still not completely effective in preventing the progress of DKD to ESRD. CHM composed of natural products has traditionally been used for symptom relief, which may offer new insights into therapeutic development of DKD. We will summarize the progress of Chinese herbal medicine (CHM) in the treatment of DKD from two aspects. In clinical trials, the Chinese herbal formulas were efficacy and safety confirmed by the randomized controlled trials. In terms of experimental research, studies provided evidence for the efficacy of CHM from the perspectives of balancing metabolic disorders, reducing inflammatory response and oxidative stress, antifibrosis, protecting renal innate cells, and regulating microRNA and metabolism. CHM consisting of different ingredients may play a role in synergistic interactions and multiple target points in the treatment of DKD.
Collapse
Affiliation(s)
- Zhenzhen Lu
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yifei Zhong
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wangyi Liu
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ling Xiang
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yueyi Deng
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
8
|
Tian C, Wang Y, Chang H, Li J, La X. Spleen-Kidney Supplementing Formula Alleviates Renal Fibrosis in Diabetic Rats via TGF- β1-miR-21-PTEN Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:3824357. [PMID: 30622599 PMCID: PMC6304600 DOI: 10.1155/2018/3824357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/28/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Spleen-Kidney Supplementing Formula (SKSF), composed of 6 raw Chinese herbs and proposed based on the therapeutic principle of supplementing spleen-kidney and clearing the extra heat of stomach-lung, is effective in the treatment of type 2 diabetes mellitus (T2DM). AIM This study aims to investigate the mechanism of SKSF to alleviate renal fibrosis in diabetic rats. METHODS T2DM model was induced by high-fat diet and multiple injections of low-dose streptozotocin. After 8-week intervention, samples were collected for detection. RESULTS SKSF decreased fasting blood glucose, glycosylated hemoglobin A1c, blood urea nitrogen, uric acid, urea, 24-hour urine protein, and KW/BW ratio, while it increased creatinine clearance rate of T2DM rats. Meanwhile, SKSF attenuated the renal fibrosis and improved the morphology and structure of renal tissue. Furthermore, SKSF significantly reduced the expression level of plasma miR-21 and TGF-β1 protein level and increased PTEN protein level. CONCLUSION SKSF could attenuate the renal damage and renal fibrosis induced in T2DM, which may be related to its regulation on the expressions of TGF-β1, PTEN, and miR-21.
Collapse
Affiliation(s)
- Chunyu Tian
- Traditional Chinese Medical College, North China University of Science and Technology, Tangshan 063210, China
| | - Ya Wang
- Traditional Chinese Medical College, North China University of Science and Technology, Tangshan 063210, China
| | - Hong Chang
- Traditional Chinese Medical College, North China University of Science and Technology, Tangshan 063210, China
| | - Ji'an Li
- Traditional Chinese Medical College, North China University of Science and Technology, Tangshan 063210, China
| | - Xiaojin La
- Traditional Chinese Medical College, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
9
|
Yuanlin P, Dehai Y. Mechanism underlying treatment of diabetic kidney disease using Traditional Chinese Medicine based on theory of Yin and Yang balance. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30921-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Lv W, Booz GW, Fan F, Wang Y, Roman RJ. Oxidative Stress and Renal Fibrosis: Recent Insights for the Development of Novel Therapeutic Strategies. Front Physiol 2018; 9:105. [PMID: 29503620 PMCID: PMC5820314 DOI: 10.3389/fphys.2018.00105] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant worldwide healthcare problem. Regardless of the initial injury, renal fibrosis is the common final pathway leading to end stage renal disease. Although the underlying mechanisms are not fully defined, evidence indicates that besides inflammation, oxidative stress plays a crucial role in the etiology of renal fibrosis. Oxidative stress results from an imbalance between the production of free radicals that are often increased by inflammation and mitochondrial dysfunction, and reduced anti-oxidant defenses. Several studies have demonstrated that oxidative stress may occur secondary to activation of transforming growth factor β1 (TGF-β1) activity, consistent with its role to increase nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity. A number of other oxidative stress-related signal pathways have also been identified, such as nuclear factor erythroid-2 related factor 2 (Nrf2), the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase 1-phosphodiesterase (cGMP-cGK1-PDE) signaling pathway, and the peroxisome proliferator-activated receptor gamma (PPARγ) pathway. Several antioxidant and renoprotective agents, including cysteamine bitartrate, epoxyeicosatrienoic acids (EETs), and cytoglobin (Cygb) have demonstrated ameliorative effects on renal fibrosis in preclinical or clinical studies. The mechanism of action of many traditional Chinese medicines used to treat renal disorders is based on their antioxidant properties, which could form the basis for new therapeutic approaches. This review focuses on the signaling pathways triggered by oxidative stress that lead to renal fibrosis and provides an update on the development of novel anti-oxidant therapies for CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
11
|
Fan Y, Chen H, Peng H, Huang F, Zhong J, Zhou J. Molecular Mechanisms of Curcumin Renoprotection in Experimental Acute Renal Injury. Front Pharmacol 2017; 8:912. [PMID: 29311922 PMCID: PMC5733093 DOI: 10.3389/fphar.2017.00912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
As a highly perfused organ, the kidney is especially sensitive to ischemia and reperfusion. Ischemia-reperfusion (IR)-induced acute kidney injury (AKI) has a high incidence during the perioperative period in the clinic and is an important link in ischemic acute renal failure (IARF). Therefore, IR-induced AKI has important clinical significance and it is necessary to explore to develop drugs to prevent and alleviate IR-induced AKI. Curcumin [diferuloylmethane, 1,7-bis(4-hydroxy-3-methoxiphenyl)-1,6-heptadiene-3,5-dione)] is a polyphenol compound derived from Curcuma longa (turmeric) and was shown to have a renoprotective effect on ischemia-reperfusion injury (IRI) in a previous study. However, the specific mechanisms underlying the protective role of curcumin in IR-induced AKI are not completely understood. APPL1 is a protein coding gene that has been shown to be involved in the crosstalk between the adiponectin-signaling and insulin-signaling pathways. In the study, to investigate the molecular mechanisms of curcumin effects in kidney ischemia/reperfusion model, we observed the effect of curcumin in experimental models of IR-induced AKI and we found that curcumin treatment significantly increased the expression of APPL1 and inhibited the activation of Akt after IR treatment in the kidney. Our in vitro results showed that apoptosis of renal tubular epithelial cells was exacerbated with hypoxia-reoxygenation (HR) treatment compared to sham control cells. Curcumin significantly decreased the rate of apoptosis in renal tubular epithelial cells with HR treatment. Moreover, knockdown of APPL1 activated Akt and subsequently aggravated apoptosis in HR-treated renal tubular epithelial cells. Conversely, inhibition of Akt directly reversed the effects of APPL1 knockdown. In summary, our study demonstrated that curcumin mediated upregulation of APPL1 protects against ischemia reperfusion induced AKI by inhibiting Akt phosphorylation.
Collapse
Affiliation(s)
- Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, The Eighth People's Hospital of Guangzhou, Guangzhou, China
| | - Huihua Peng
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, China
| | - Fang Huang
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, China
| | - Jiying Zhong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Jun Zhou
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|