1
|
Sandech N, Yang MC, Juntranggoor P, Rukthong P, Gorelkin P, Savin N, Timoshenko R, Vaneev A, Erofeev A, Wichaiyo S, Pradidarcheep W, Maiuthed A. Benja-ummarit induces ferroptosis with cell ballooning feature through ROS and iron-dependent pathway in hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118672. [PMID: 39127118 DOI: 10.1016/j.jep.2024.118672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benja-ummarit (BU), a traditional Thai herbal formula, has been prescribed by traditional Thai practitioners for the treatment of liver cancer. Clinical trials of BU have shown an increase in overall survival in hepatocellular carcinoma (HCC) patients, including stage 1-3 (with or without prior standard chemotherapy) and terminal stage. The clinical outcomes differ from those of other apoptosis-based conventional chemotherapies. The molecular mechanisms underlying the anti-cancer properties of BU remain unclear. AIM OF STUDY To investigate BU-induced ferroptosis through morphological and molecular analyses of HCC cell lines and HCC rat tissues. METHODOLOGY Cytotoxicity of BU extract in HepG2 and HuH-7 cells, with or without LX-2 in 2D and 3D cultures, was determined through MTT assay and by observing spheroid formation, respectively, as compared to sorafenib. Morphological changes and the cellular ultrastructure of the treated cells were evaluated by light microscopy and transmission electron microscopy (TEM), respectively. In addition, alterations in ferroptosis protein markers in both cell lines and rat liver tissue were determined using western blot analysis and immunohistochemical staining, respectively. To investigate the pathways mediating ferroptosis, cells were pretreated with an iron chelator to confirm the iron-dependent ferroptosis induced by the BU extract. Intracellular ROS, a mediator of ferroptosis, was measured using a scanning ion conductance microscope (SICM). SICM was also used to determine cellular stiffness. The lipid profiles of BU-treated cells were studied using LC-MS/MS. RESULTS The BU extract induced cell death under all HCC cell culture conditions. The BU-IC50 in HepG2 and HuH-7 were 31.24 ± 4.46 μg/mL and 23.35 ± 0.27 μg/mL, respectively as determined by MTT assay. In co-culture with LX-2, BU exhibited a similar trend of cytotoxicity in both HepG2 and HuH-7 cells. Light microscopy showed cell ballooning features with intact plasma membranes, and TEM microscopy showed mitochondrial swelling and reduced mitochondrial cristae in BU-treated cells. BU promotes intracellular iron levels by increasing DMT1 and NCOA4 expression and decreasing FTH1 expression. BU also suppressed the cellular antioxidant system by lowering CD98, NRF2, and GPX4 expression, and promoting KEAP1 expression. IHC results of HCC rat liver tissues showed the absence of DMT1 and high expression of GPX4 in the tumor area. Pre-treatment with an iron chelator partially restored cell viability and shifted the mode of cell death to a more apoptosis-like morphology in the BU-treated group. The SICM showed increased intracellular ROS levels and cellular stiffness 24 h after BU treatment. In more detail of BU-mediated ferroptosis, cellular lipid profiling revealed increased expression of 3 polyunsaturated lipids, which are highly susceptible to lipid peroxidation, in BU-treated cells. DISCUSSION Alterations in intracellular iron levels, ROS levels, and cellular lipid composition have been previously reported in cancer cells. Therefore, targeting the iron-dependent ROS pathway and polyunsaturated lipids via BU-induced ferroptosis may be more cancer-specific than apoptosis-based cancer drugs. These observations are in accordance with the clinical outcomes of BU. The ferroptosis-inducing mechanism of BU makes it an extremely promising novel drug candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Nichawadee Sandech
- Doctor of Philosophy Program in Innovative Anatomy, Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Meng Chieh Yang
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pichakorn Juntranggoor
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pattarawit Rukthong
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakornnayok, 26120, Thailand; Center for Excellence in Plant and Herbal Innovation Research, Strategic Wisdom and Research Institute, Srinakharinwirot University, Nakornnayok, 26120, Thailand
| | - Petr Gorelkin
- ICAPPIC Limited, London, E8 3PN, United Kingdom; Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Nikita Savin
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Roman Timoshenko
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Alexander Vaneev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander Erofeev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Surasak Wichaiyo
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Arnatchai Maiuthed
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Chen J, Li Y, Xu H, Lian M, Wang H, Zhu D. Structurally diverse diterpenoids and phenanthrene derivatives from the roots of Baliospermumsolanifolium. PHYTOCHEMISTRY 2024; 225:114194. [PMID: 38897264 DOI: 10.1016/j.phytochem.2024.114194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Ten undescribed diterpenoids (1-10) and three undescribed phenanthrene derivatives (11-13), together with seven known compounds, were isolated from the roots of Baliospermum solanifolium. Their structures were determined by a combination of spectroscopic data analysis, electronic circular dichroism calculations and single-crystal X-ray diffraction studies. Compounds 1-7 (baliosperoids A-G) represent the examples of 20-nor-ent-podocarpane class first discovered in nature. In particular, compound 7 possesses a unique 2,3-seco ring system incorporating γ-butanolide moiety. All isolates were assessed for their cytotoxic activities against HT-29, HCT-116, HCT-15, MCF-7, and A549 cell lines as well as their inhibitory effects on lipopolysaccharide-induced NO production in RAW264.7 cells. Compound 1, a 20-nor-ent-podocarpane-type diterpenoid possessing a Δ1,2 double bond, not only exhibited considerable proliferation inhibition against five human cancer cell lines, with IC50 values ranging from 4.13 to 23.45 μM, but also displayed the most potent inhibitory activity on NO production with IC50 value at the nanomolar level (0.63 ± 0.21 μM).
Collapse
Affiliation(s)
- Jiangbo Chen
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yue Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Haoqiang Xu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Mingjing Lian
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongying Wang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Dongrong Zhu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
3
|
Tayeb BA, Kusuma IY, Osman AAM, Minorics R. Herbal compounds as promising therapeutic agents in precision medicine strategies for cancer: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:137-162. [PMID: 38462407 DOI: 10.1016/j.joim.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The field of personalized medicine has gained increasing attention in cancer care, with the aim of tailoring treatment strategies to individual patients for improved outcomes. Herbal medicine, with its long-standing historical use and extensive bioactive compounds, offers a rich source of potential treatments for various diseases, including cancer. OBJECTIVE To provide an overview of the current knowledge and evidence associated with incorporating herbal compounds into precision medicine strategies for cancer diseases. Additionally, to explore the general characteristics of the studies included in the analysis, focusing on their key features and trends. SEARCH STRATEGY A comprehensive literature search was conducted from multiple online databases, including PubMed, Scopus, Web of Science, and CINAHL-EBSCO. The search strategy was designed to identify studies related to personalized cancer medicine and herbal interventions. INCLUSION CRITERIA Publications pertaining to cancer research conducted through in vitro, in vivo, and clinical studies, employing natural products were included in this review. DATA EXTRACTION AND ANALYSIS Two review authors independently applied inclusion and inclusion criteria, data extraction, and assessments of methodological quality. The quality assessment and biases of the studies were evaluated based on modified Jadad scales. A detailed quantitative summary of the included studies is presented, providing a comprehensive description of their key features and findings. RESULTS A total of 121 studies were included in this review for analysis. Some of them were considered as comprehensive experimental investigations both in vitro and in vivo. The majority (n = 85) of the studies included in this review were conducted in vitro, with 44 of them specifically investigating the effects of herbal medicine on animal models. Additionally, 7 articles with a combined sample size of 31,271 patients, examined the impact of herbal medicine in clinical settings. CONCLUSION Personalized medication can optimize the use of herbal medicine in cancer treatment by considering individual patient factors such as genetics, medical history, and other treatments. Additionally, active phytochemicals found in herbs have shown potential for inhibiting cancer cell growth and inducing apoptosis, making them a promising area of research in preclinical and clinical investigations. Please cite this article as: Tayeb BA, Kusuma IY, Osman AAM, Minorics R. Herbal compounds as promising therapeutic agents in precision medicine strategies for cancer: A systematic review. J Integr Med. 2024; 22(2): 137-162.
Collapse
Affiliation(s)
- Bizhar Ahmed Tayeb
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary.
| | - Ikhwan Yuda Kusuma
- Institution of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Hungary; Pharmacy Study Program, Faculty of Health, Universitas Harapan Bangsa, Purwokerto 53182, Indonesia
| | - Alaa A M Osman
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, University of Gezira, 20 Wad Madani, Sudan
| | - Renáta Minorics
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
4
|
Jiménez-González V, Kowalczyk T, Piekarski J, Szemraj J, Rijo P, Sitarek P. Nature's Green Potential: Anticancer Properties of Plants of the Euphorbiaceae Family. Cancers (Basel) 2023; 16:114. [PMID: 38201542 PMCID: PMC10778523 DOI: 10.3390/cancers16010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The number of cancer cases will reach 24 million in 2040, according to the International Agency for Research on Cancer. Current treatments for cancer are not effective and selective for most patients; for this reason, new anticancer drugs need to be developed and researched enough. There are potentially useful drugs for cancer isolated from plants that are being used in the clinic. Available information about phytochemistry, traditional uses, in vitro and in vivo experiments with plants, and pure compounds isolated from the Euphorbiaceae family indicates that this family of plants has the potential to develop anticancer drugs. This review examines selected species from the Euphorbiaceae family and their bioactive compounds that could have potential against different types of cancer cells. It reviews the activity of crude extracts, isolated compounds, and nanoparticles and the potential underlying mechanisms of action.
Collapse
Affiliation(s)
- Víctor Jiménez-González
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Janusz Piekarski
- Department of Surgical Oncology, Medical University in Lodz, 93-513 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Patricia Rijo
- CBIOS-Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, 90-151 Lodz, Poland;
| |
Collapse
|
5
|
Maglangit F, Kyeremeh K, Deng H. Deletion of the accramycin pathway-specific regulatory gene accJ activates the production of unrelated polyketide metabolites. Nat Prod Res 2023; 37:2753-2758. [PMID: 36125461 DOI: 10.1080/14786419.2022.2126466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
The manipulation of regulatory genes has been employed to awaken cryptic metabolites in Streptomyces. Of particular interest in recent years is the effect of disruption of a pathway-specific gene to other biosynthetic pathways. Herein, we report the inactivation of the accramycin pathway-specific regulatory gene, accJ in Streptomyces sp. MA37 resulted in the production of unrelated polyketide metabolites. Through detailed mass spectrometric and spectroscopic analyses, and comparison with literature data, their structures were deduced as 3-methoxy-2-methyl-4H-pyran-4-one (1), zanthopyranone (2), propioveratrone (3), and TW94a (4). To the best of our knowledge, this is the first report of the isolation of 1-3 from bacteria. Compounds 1, 2, and 4 showed weak to moderate activity against Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium. Propioveratrone (3) displayed better inhibitory activity (MIC = 6.3 μg/mL) than ampicillin against multi-drug resistant E. faecium K60-39 clinical isolate (MIC = 25 μg/mL), suggesting a promising structural template for the drug development targeting Enterococcus isolates.
Collapse
Affiliation(s)
- Fleurdeliz Maglangit
- Department of Biology and Environmental Science, College of Science, University of the Philippines Cebu, Lahug, Cebu City, Philippines
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, Legon-Accra, Ghana
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
6
|
Prommee N, Itharat A, Thongdeeying P, Makchuchit S, Pipatrattanaseree W, Tasanarong A, Ooraikul B, Davies NM. Exploring in vitro anti-proliferative and anti-inflammatory activities of Prasachandaeng remedy, and its bioactive compounds. BMC Complement Med Ther 2022; 22:217. [PMID: 35953870 PMCID: PMC9373486 DOI: 10.1186/s12906-022-03678-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Prasachandaeng (PSD) remedy has been empirically used in Thai traditional medicine to treat fever in bile duct and liver and cancer patients through Thai folk doctors. However, there have been no scientific reports on the bioactive compounds and bioactivities related to inflammation-associated carcinogenesis or cytotoxicity against cancer cell lines. In this study, we investigated the chemical content of the remedy, and evaluated its cytotoxic activity against two cancer cell lines in comparison with a non-cancerous cell line and determined tumor necrosis factor-alpha (TNF-α) production in a murine macrophage cell line (RAW 264.7) to evaluate anti-inflammatory activity. A novel HPLC method was used for quality control of its chemical content. Methods Pure compounds from the EtOH extract of D. cochinchinensis were isolated using bioassay-guided fractionation and chemical content of the PSD remedy was determined using HPLC. The cytotoxic activity against the hepatocarcinoma cell line (HepG2) and cholangiocarcinoma cell line (KKU-M156), in comparison with non-cancerous cell line (HaCaT), were investigated using antiproliferative assay (SRB). The anti-inflammatory activity measured by TNF-α production in RAW 264.7 was determined using ELISA. Results All crude extracts and isolated compounds exhibited significant differences from vincristine sulfate (****p < 0.0001) in their cytotoxic activity against HepG2, KKU-M156, and HaCaT. The PSD remedy exhibited cytotoxic activity against HepG2 and KKU-M156 with IC50 values of 10.45 ± 1.98 (SI = 5.3) and 4.53 ± 0.74 (SI = 12.2) µg/mL, respectively. Some constituents from C. sappan, D. cochinchinensis, M. siamensis, and M. fragrans also exhibited cytotoxic activity against HepG2 and KKU-M156, with IC50 values less than 10 µg/mL. The isolated compounds, i.e., Loureirin B (1), 4-Hydroxy-2,4’-dimethoxydihydrochalcone (2), and Eucomol (3) exhibited moderate cytotoxicity against two cancer cell lines. None of the crude extracts and isolated compounds showed cytotoxicity against HaCaT. D. cochinchinensis and PSD remedy exhibited higher anti-inflammatory activity measured as TNF-α production than acetaminophen. Conclusion The findings provide evidence of bioactivity for EtOH extracts of PSD remedy and the isolated compounds of D. Cochinchinensis. The results consistent the use clinical activity and use of PSD remedy as a antipyretic treatment for liver and bile duct cancer patients by Thai traditional practitioners.
Collapse
|
7
|
Vikram ENT, Ilavarasan R, Kamaraj R. Anti-cancer activities of Schedule E1 drugs used in ayurvedic formulations. J Ayurveda Integr Med 2022; 13:100545. [PMID: 35661925 PMCID: PMC9163510 DOI: 10.1016/j.jaim.2022.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Schedule E1 is an important part of Drugs and Cosmetics Act (Government of India) that comprises the list of poisonous drugs from plant, animal and mineral origins to be consumed under medical supervision. Ayurveda, the world's oldest medicinal system has a list of drugs represented in schedule E1 that are used since thousands of years. This review reports the anti-cancer activities of fifteen toxic ayurvedic drugs from plant origin represented in Drugs and Cosmetics Act, 1940. The information was collected from the various authentic sources, compiled and summarised. The plant extracts, formulations, phytoconstituents and other preparations of these drugs have shown effective activities against mammary carcinoma, neuroblastoma, non-small cell lung carcinoma, lymphocytic leukaemia, colorectal adenocarcinoma, Ehrlich ascites carcinoma, prostate adenocarcinoma, glioblastoma asterocytoma and other malignancies. They have various mechanisms of action including Bax upregulation, Bcl2 downregulation, induction of cell cycle arrest at S phase, G2/M phase, inhibition of vascular endothelial growth factors, inhibition of Akt/mTOR signalling etc. Certain traditional ayurvedic preparations containing these plants are reported beneficial and the possibilities of these drugs as the alternative and adjuvant therapeutic agents in the current cancer care have been discussed. The studies suggest that these drugs could be utilised in future for the critical care of malignancies.
Collapse
Affiliation(s)
- E N T Vikram
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (Dt.), Tamilnadu 603203, India
| | - R Ilavarasan
- Captain Srinivasa Murthy Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Arumbakkam, Chennai, Tamilnadu 600106, India
| | - R Kamaraj
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (Dt.), Tamilnadu 603203, India.
| |
Collapse
|
8
|
Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade. Pharmaceuticals (Basel) 2022; 15:ph15040437. [PMID: 35455434 PMCID: PMC9029490 DOI: 10.3390/ph15040437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022] Open
Abstract
Rosmarinic acid (RA) is a phenolic compound that has several bioactivities, such as anti-inflammatory and antioxidant activities. Here, we further investigate the anti-inflammatory effect of RA on rat A7r5 aortic smooth muscle cells with exposure to lipopolysaccharide (LPS). Our findings showed that low-dose RA (10–25 μM) did not influence the cell viability and morphology of A7r5 cells and significantly inhibited LPS-induced mRNA expression of the pro-inflammatory mediators TNFα, IL-8, and inducible NO synthase (iNOS). Consistently, RA reduced the production of TNFα, IL-8, and NO by A7r5 cells with exposure to LPS. Signaling cascade analysis showed that LPS induced activation of Erk, JNK, p38 mitogen-activated protein kinase (MAPK), and NF-κB, and RA treatments attenuated the activation of the three MAPKs and NF-κB. Moreover, cotreatment with RA and Erk, JNK, p38 MAPK, or NF-κB inhibitors further downregulated the mRNA expression of TNFα, IL-8, and iNOS, and decreased the production of TNFα, IL-8, and NO by A7r5 cells. Taken together, these findings indicate that RA may ameliorate the LPS-provoked inflammatory response of vascular smooth muscle cells by inhibition of MAPK/NF-κB signaling.
Collapse
|
9
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
10
|
Jagannath S, Konappa N, Lokesh A, Dasegowda T, Udayashankar AC, Chowdappa S, Cheluviah M, Satapute P, Jogaiah S. Bioactive compounds guided diversity of endophytic fungi from Baliospermum montanum and their potential extracellular enzymes. Anal Biochem 2020; 614:114024. [PMID: 33245903 DOI: 10.1016/j.ab.2020.114024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Baliospermum montanum (Willd.) Muell. Arg, a medicinal plant distributed throughout India from Kashmir to peninsular-Indian region is extensively used to treat jaundice, asthma, and constipation. In the current study, 203 endophytic fungi representing twenty-nine species were isolated from tissues of B. montanum. The colonization and isolation rate of endophytes were higher in stem followed by seed, root, leaf and flower. The phytochemical analysis revealed 70% endophytic isolates showed alkaloids and flavonoids, 13% were positive for phenols, saponins and terpenoids. Further, these endophytes produced remarkable extracellular enzymes such as amylase, cellulase, phosphates, protease and lipase. The most promisive three endophytic fungi were identified by ITS region and secreted metabolites were identified by gas chromatography-mass spectrometry (GC-MS/MS). The GC-MS profile detected twenty-five bioactive compounds from ethyl acetate extracts. Among endophytic fungi, Trichoderma reesei isolated from flower exhibited nine bioactive compounds namely, 2-Cyclopentenone, 2-(4-chloroanilino)-4-piperidino, Oxime-methoxy-Phenyl, Methanamine N-hydroxy-N-methyl, Strychane, Cyclotetrasiloxane, Octamethyl and 1-Acetyl-20a-hydroxy-16-methylene. The endophyte, Aspergillus brasiliensis isolated from root and Fusarium oxysporum isolated from seed produced nine and seven bioactive compounds, respectively. Overall, a significant contribution of bioactive compounds was noticed from the diverse endophytic fungi associated with B. montanum and could be explored for development of novel drug with commercial values.
Collapse
Affiliation(s)
- Shubha Jagannath
- Department of Botany, Molecular Biology Division, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Narasimhamurthy Konappa
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysur, 570 006, Karnataka, India
| | - Arpitha Lokesh
- Department of Botany, Molecular Biology Division, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Tejaswini Dasegowda
- Department of Botany, Molecular Biology Division, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Arakere C Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysur, 570 006, Karnataka, India
| | - Srinivas Chowdappa
- Fungal Metabolites Research Laboratory, Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bangalore, 560 056, Karnataka, India
| | - Maya Cheluviah
- Department of Botany, Molecular Biology Division, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India.
| | - Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnataka University, Dharwad, 580 003, Karnataka, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnataka University, Dharwad, 580 003, Karnataka, India.
| |
Collapse
|
11
|
Wang Y, Liu Y, Li J, Xu X, Li X. Zinc ferrate nanoparticles for applications in medicine: synthesis, physicochemical properties, regulation of macrophage functions, and in vivo safety evaluation. Nanotoxicology 2020; 14:1381-1398. [PMID: 33075238 DOI: 10.1080/17435390.2020.1831094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Zinc ferrate nanoparticles (ZnFe2O4 NPs) have attracted enormous interest as potential nanomaterials. The purpose of this study was to examine the in vitro macrophages toxicity, in vivo safety, and immunogenicity. Three kinds of ZnFe2O4 NPs with different shapes (round, litchi, and raspberry), nano-sizes, and pores were successfully prepared. In vitro experiments showed that ZnFe2O4 NPs caused no cytotoxicity against the RAW 264.7 cells up to administered dose of 200 μg/mL, enhanced proinflammatory cytokine TNF-α, and costimulatory marker CD86 expression in the RAW 264.7 cells. Interestingly, ZnFe2O4 NPs reduced ROS expression, which was inconsistent with common metal oxide NPs such as iron oxide (Fe3O4) NPs and zinc oxide (ZnO) NPs. ZnFe2O4 NPs improved the RAW 264.7 cells phagocytosed more neutral red. There was no obvious difference in body weight, the number of immune cells, organ index, and expression of inflammatory factors in serum of rats administrated intravenously and subcutaneously on day 21 after treatment by ZnFe2O4 NPs in comparison with the blank control. These results demonstrated that ZnFe2O4 NPs slightly enhanced the function of the RAW 264.7 cells in vitro but caused no obvious toxicity to macrophages as well as rat blood cells, and low immunogenicity in rats, suggesting that ZnFe2O4 NPs as a biocompatible nanomaterials achieved potential for bioapplication in the future.
Collapse
Affiliation(s)
- Yu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yajie Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiajia Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoqing Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinru Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|