1
|
Cheng M, Qiang Y, Wu Y, Tong X, Tie Y, Sun Z, Guan S, Xu L, Xu P, Li X, Xue M, Zhou X. Multi-omic approaches provide insights into the molecular mechanisms of Sojae semen germinatum water extract against overactive bladder. Food Res Int 2024; 175:113746. [PMID: 38129051 DOI: 10.1016/j.foodres.2023.113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Sojae semen germinatum (SSG) is derived from mature soybean seeds that have been germinated and dried, typically with sprouts measuring approximately 0.5 cm in length. SSG is traditionally known for its properties in clearing heat and moisture. Nevertheless, limited information was reported on the effects and mechanisms of SSG in alleviating urinary symptoms. This study employed urodynamic parameters to investigate the therapeutic effect of SSG water extract on overactive bladder (OAB) in the rat model with benign prostatic hyperplasia. Through a combination of transcriptomic and metabolomic analyses, the pathways and key proteins of the SSG treatment for OAB were identified and validated by ELISA and Western blotting. Furthermore, network pharmacology elucidated the roles of SSG's isoflavones acting on the target which was identified by above-mentioned multi-omics analysis. Our results indicate that SSG water extract significantly mitigated OAB by down-regulating the PGE2/EP1/PLCβ2/p-MLC signaling pathway. It was speculated that the active ingredient in the SSG on EP1 was genistein. This study provided valuable insights into the molecular mechanisms of SSG water extract, emphasizing the multi-target characteristics and critical pathways in improving OAB. Furthermore, this study contributes to the potential utilization of SSG as a functional food.
Collapse
Affiliation(s)
- Mingchang Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yining Qiang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yushan Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinyi Tong
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Tie
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhihui Sun
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shenghan Guan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Liping Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaorong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
LIU X, HU X, WU S, LIU J, WANG J. Extracts from sojae semen germinatum ameliorated carbon tetrachloride-induced liver injury in mice. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xiwei LIU
- Wuhan University of Science and Technology, China
| | - Xianmin HU
- Wuhan University of Science and Technology, China
| | - Shuzhe WU
- Wuhan University of Science and Technology, China
| | - Juan LIU
- Wuhan University of Science and Technology, China
| | - Jun WANG
- Wuhan University of Science and Technology, China
| |
Collapse
|
3
|
Grigore A, Vulturescu V. Natural Approach in Osteoarthritis Therapy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:26-31. [PMID: 35362392 DOI: 10.2174/2772270816666220331163707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease worldwide, and its rising prevalence is supported by factors such as obesity and sedentariness. At the molecular level, it is considered an inflammatory disease that leads to the destruction of articular cartilage. Effective therapy to end the degenerative process of arthritis remains elusive, and most therapeutic tools prevent the progress or alleviate the symptoms. By now, medicines for OA are available for oral, topical, or intra-articular (IA) therapy and include analgesics, nonsteroidal anti-inflammatory drugs, corticosteroids, and hyaluronic acid. Compared with conventional oral administration, IA therapy has multiple advantages in terms of bioavailability, efficacy, and toxicity. This review aims to study the underlying beneficial effects of herbal medicine in OA therapy and to open new research perspectives. Herbal medicine administered orally or topically exhibits pharmacological properties that could be relevant for their beneficial effect in OA, mainly anti-inflammatory and antioxidant effects. There are few studies regarding IA injections of plant extracts/ compounds and none related to any combination with agents already used in the clinic. Designing natural pharmaceutical formulations with increased bioavailability that are safe, lack side effects, and are specifically tested, would be a plus for research on medicinal plants and a novelty for the clinic.
Collapse
Affiliation(s)
- Alice Grigore
- National Institute for Chemical-Pharmaceutical Research and Development-ICCF Bucharest, Pharmaceutical Biotechnologies Department, Calea Vitan, No. 112, 3rd District, 031299 Bucharest, Romania
| | - Virginia Vulturescu
- National Institute for Chemical-Pharmaceutical Research and Development-ICCF Bucharest, Pharmacology Department, Calea Vitan, No. 112, 3rd District, 031299 Bucharest, Romania
| |
Collapse
|