1
|
Chen X, Zhao Z, Zhao R, Li W, Liu X, Tian L, Liu M. STC1 encapsulated in small extracellular vesicles from laryngeal squamous cell carcinoma cells induces CD8 + T cell dysfunction by reprogramming tumor-associated macrophages into M2-like macrophages. Cancer Immunol Immunother 2025; 74:64. [PMID: 39751648 PMCID: PMC11699165 DOI: 10.1007/s00262-024-03915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Tumor-derived small extracellular vesicles (sEVs) play an essential role in reprogramming the tumor microenvironment. Metabolic reprogramming is an essential prerequisite for M2 polarization of tumor-associated macrophages (TAMs). This M2 phenotype is closely related to the immune dysfunction of CD8+ T cells and subsequent tumor progression. This study evaluates the role of laryngeal squamous cell carcinoma cell-derived small extracellular vesicles (LSCC-sEVs) in M2 polarization of TAMs and CD8+ T cell dysfunction, and delineates the underlying mechanisms. METHODS Human leukemia monocyte cell line (THP-1) was induced to differentiate into M0 macrophages using phorbol 12-myristate 13-acetate. M0 macrophages were incubated with sEVs derived from LSCC cells TU212. CD8+T cells, extracted from peripheral blood mononuclear cells of healthy volunteer donors, were co-cultured with the LSCC-sEV-treated M0 macrophages to evaluate their proliferation, and immune function. The role of LSCC-sEVs was investigated in macrophage tumor-bearing mouse models. RESULTS LSCC-sEVs promoted TAM M2 polarization and impaired CD8+ T cell function, attributing to PD-L1 expression upregulation. In addition, suppression of metabolic reprogramming could partially reverse LSCC-sEV-induced CD8+ T cell dysfunction. STC-1 was found highly enriched in LSCC-sEVs. Knockdown of STC1 abrogated metabolic reprogramming of TAMs into M2-like macrophages and restored CD8+ T cell function. Importantly, in vivo results showed that LSCC-sEVs transform TAMs into M2 phenotype by mediating metabolic reprogramming and induce CD8+ T cell dysfunction, ultimately accelerating tumor growth. CONCLUSION Our data reveal a previously undescribed role for LSCC-sEVs in the regulation of M2 polarization of TAMs and immune cell function through STC1 mediated metabolic reprogramming.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhigang Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Rui Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Wenjing Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xinyu Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First People Hospital of Jining, Jining, 272000, China
| | - Linli Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ming Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
2
|
LIU S, LI J, QUE Z, YU P, TIAN J. [Advances of Fundamental Research on Traditional Chinese Medicine in Regulation of Tumor-associated Macrophages for the Prevention and Treatment of
Lung Cancer Metastasis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:541-549. [PMID: 39147709 PMCID: PMC11331253 DOI: 10.3779/j.issn.1009-3419.2024.106.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 08/17/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with metastasis being the primary cause of mortality in lung cancer patients, and its prevention and control efficacy remain limited. In recent years, immunotherapy has emerged as a promising direction for overcoming the bottleneck of metastasis. Macrophages, as essential components of innate immunity, participate in the entire process of tumor initiation and progression. Tumor-associated macrophages (TAMs) represent the most abundant immune population in the tumor microenvironment (TME), displaying both anti-tumor M1-like and pro-tumor M2-like phenotypes. The latter promotes tumor invasion and metastasis, angiogenesis, lymphangiogenesis, immune suppression, and reactivation of dormant disseminated tumor cells (DTCs), thereby facilitating tumor metastasis. In recent years, traditional Chinese medicine (TCM) has shown significant efficacy in inhibiting tumor metastasis and has been extensively validated. It exerts anti-tumor effects by reducing the recruitment of TAMs, inhibiting M2-like polarization, and modulating cytokines and proteins in the TME. This paper reviews the relationship between TAMs and lung cancer metastasis, elucidates the targets and mechanisms of TCM in regulating TAMs to prevent and treat lung cancer metastasis, aiming to provide insights into lung cancer prevention and treatment.
.
Collapse
|
3
|
Gao J, Tan W, Yuan L, Wang H, Wen J, Sun K, Chen X, Wang S, Deng W. Antitumour mechanisms of traditional Chinese medicine elicited by regulating tumour-associated macrophages in solid tumour microenvironments. Heliyon 2024; 10:e27220. [PMID: 38463777 PMCID: PMC10923716 DOI: 10.1016/j.heliyon.2024.e27220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Tumour-associated macrophages (TAMs), particularly M2-TAMs, constitute the largest proportion of immune cells in the solid tumour microenvironment, playing a crucial role in tumour progression and correlating with poor prognosis. TAMs promote the proliferation, invasion, and metastasis of tumour cells by remodelling the extracellular matrix, inhibiting immunity, promoting immune escape and tumour angiogenesis, and affecting cell metabolism. Traditional Chinese medicine (TCM) has been used clinically in China for millennia. Chinese herbs exhibit potent antitumour effects with minimal to no toxicity, substantially contributing to prolonging the lives of patients with cancer and improving their quality of life. TCM has unique advantages in improving the solid tumour microenvironment, particularly in regulating TAMs to further inhibit tumour angiogenesis, reduce drug resistance, reverse immunosuppression, and enhance antitumour immunity. This review highlights the TAM-associated mechanisms within the solid tumour microenvironment, outlines the recent advancements in TCM targeting TAMs for antitumour effects, emphasises the superiority of combining TCM with standard treatments or new nano-drug delivery systems, and evaluates the safety and efficacy of TCM combined with conventional treatments via clinical trials to provide insights and strategies for future research and clinical treatment.
Collapse
Affiliation(s)
- Jiamin Gao
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Weishan Tan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Luyun Yuan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Haoyue Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Junkai Wen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Kexiang Sun
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Xin Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Shuyun Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Wanli Deng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| |
Collapse
|
4
|
Tomé-Sánchez I, Martínez-Villaluenga C, Martín-Diana AB, Rico D, Jiménez-Pulido I, Frias J, Dia VP. Antioxidant, Immunostimulatory, and Anticancer Properties of Hydrolyzed Wheat Bran Mediated through Macrophages Stimulation. Int J Mol Sci 2023; 24:ijms24087436. [PMID: 37108599 PMCID: PMC10139194 DOI: 10.3390/ijms24087436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Previous studies demonstrated that enzymatic hydrolysis enhances wheat bran (WB) biological properties. This study evaluated the immunostimulatory effect of a WB hydrolysate (HYD) and a mousse enriched with HYD (MH) before and after in vitro digestion on murine and human macrophages. The antiproliferative activity of the harvested macrophage supernatant on colorectal cancer (CRC) cells was also analyzed. MH showed significantly higher content than control mousse (M) in soluble poly- and oligosaccharides (OLSC), as well as total soluble phenolic compounds (TSPC). Although in vitro gastrointestinal digestion slightly reduced the TSPC bioaccessibility of MH, ferulic acid (FA) levels remained stable. HYD showed the highest antioxidant activity followed by MH, which demonstrated a greater antioxidant activity before and after digestion as compared with M. RAW264.7 and THP-1 cells released the highest amounts of pro-inflammatory cytokines after being treated with 0.5 mg/mL of digested WB samples. Treatment with digested HYD-stimulated RAW264.7 supernatant for 96 h showed the most anticancer effect, and spent medium reduced cancer cell colonies more than direct WB sample treatments. Although a lack of inner mitochondrial membrane potential alteration was found, increased Bax:Bcl-2 ratio and caspase-3 expression suggested activation of the mitochondrial apoptotic pathway when CRC cells were treated with macrophage supernatants. Intracellular reactive oxygen species (ROS) were positively correlated with the cell viability in CRC cells exposed to RAW264.7 supernatants (r = 0.78, p < 0.05) but was not correlated in CRC cells treated with THP-1 conditioned media. Supernatant from WB-stimulated THP-1 cells may be able to stimulate ROS production in HT-29 cells, leading to a decrease of viable cells in a time-dependent manner. Therefore, our present study revealed a novel anti-tumour mechanism of HYD through the stimulation of cytokine production in macrophages and the indirect inhibition of cell proliferation, colony formation, and activation of pro-apoptotic proteins expression in CRC cells.
Collapse
Affiliation(s)
- Irene Tomé-Sánchez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais, 6, 28040 Madrid, Spain
| | | | - Ana Belén Martín-Diana
- Agricultural Technological Institute of Castilla and Leon, Government of Castilla and Leon, Finca Zamadueñas, Castilla and Leon, 47071 Valladolid, Spain
| | - Daniel Rico
- Agricultural Technological Institute of Castilla and Leon, Government of Castilla and Leon, Finca Zamadueñas, Castilla and Leon, 47071 Valladolid, Spain
| | - Iván Jiménez-Pulido
- Agricultural Technological Institute of Castilla and Leon, Government of Castilla and Leon, Finca Zamadueñas, Castilla and Leon, 47071 Valladolid, Spain
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais, 6, 28040 Madrid, Spain
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Zhang J, Cui J, Gao J, Zhang D, Lin D, Lin J. Polysaccharides of Plantago asiatica enhance antitumor activity via regulating macrophages to M1-like phenotype. Biomed Pharmacother 2023; 159:114246. [PMID: 36652734 DOI: 10.1016/j.biopha.2023.114246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Monocyte-derived macrophages can be polarized into antitumor M1 phenotype, which inhibited the growth of tumors, and immune-suppressive M2 phenotype, which promoted the development and metastasis of tumors. Plantain polysaccharide (PLP), extracted from the Plantago asiatica, has shown its various biological activities. However, the ability of PLP involved in immune regulation was still obscure. Accordingly, we aimed to investigate whether PLP could polarize macrophages and further inhibit 4T1 tumor cells in vivo and in vitro. In this research, in vitro results showed that PLP displayed the potential in polarizing RAW264.7 macrophages into M1 phenotype and indirect inhibiting migratory effect on 4T1 cells. Furthermore, the phagocytosis and the release of reactive oxygen species (ROS) of macrophages were enhanced. In vivo anti-tumor results demonstrated that PLP could effectively inhibit the growth of 4T1 breast tumors by promoting accumulation of macrophages and T cells in the spleen and lymph node. In conclusion, these findings indicated that PLP inhibited the proliferation and progression of breast tumors by accumulating CD4+, CD8+ T cells and M1-like macrophages in lymph node and spleen, and therefore provided an experimental basis for PLP as a potential antitumor adjunctive therapy in preclinical and clinical trials.
Collapse
Affiliation(s)
- Jiatong Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingwen Cui
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China; Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
DING J, XING Y, CHEN Z, CHEN W, MA Z, XIE Y, ZHOU L. Qilan preparation inhibits proliferation and induces apoptosis by down-regulating microRNA-21 in human Tca8113 tongue squamous cell carcinoma cells. J TRADIT CHIN MED 2022; 42:693-700. [PMID: 36083475 PMCID: PMC9924750 DOI: 10.19852/j.cnki.jtcm.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE The aim of this study was to examine the antitumor effects of Qilan preparation on oral squamous cell carcinoma (OSCC) and to investigate its underlying mechanisms of action. METHODS Cell proliferation, cell cycle distribution and apoptosis were examined using cell counting kit-8 (CCK8) and flow cytometry (FCM). The expression of PTEN and PDCD4 were determined by western blot. Changes in miR-21 levels were quantified using TaqMan stem-loop real-time PCR. After miR-21 was transiently transfected into Tca8113 cells using Lipofectamine®3000, cell proliferation, apoptosis and miR-21 and PDCD4 expression levels were measured. RESULTS Qilan preparation inhibited Tca8113 cell growth in a dose- and time-dependent manner by inducing apoptosis and cell cycle arrest in S-phase, decreasing miR-21 levels and increasing PTEN and PDCD4 expression. MiR-21 overexpression reversed the Qilan preparation-induced suppression of cell proliferation and induction of apoptosis while also blocking the increase in PDCD4. CONCLUSIONS Our study revealed, for the first time, the ability of Qilan preparation to suppress TSCC cell growth and elucidated that Qilan preparation elicits its anti-cancer actions either the miR-21/PDCD4 or PTEN pathway.
Collapse
Affiliation(s)
- Jiamin DING
- 1 Department of Oral Mucosal Diseases, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Yifeng XING
- 2 School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350000, China
| | - Zuoliang CHEN
- 3 Department of Oral Mucosal Diseases, Xiamen Stomatological Hospital, School of Stomatology, Fujian Medical University, Xiamen 361003, China
| | - Wanlu CHEN
- 1 Department of Oral Mucosal Diseases, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Zhongxiong MA
- 1 Department of Oral Mucosal Diseases, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Yunde XIE
- 1 Department of Oral Mucosal Diseases, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Lin ZHOU
- 4 Department of Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350001, China
- ZHOU Lin, Department of Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350001, China. : +86-591-83754882
| |
Collapse
|
7
|
Guan X, Wang Q, Lin B, Sun M, Zheng Q, Huang J, Lai G. Structural characterization of a soluble polysaccharide SSPS1 from soy whey and its immunoregulatory activity in macrophages. Int J Biol Macromol 2022; 217:131-141. [PMID: 35835298 DOI: 10.1016/j.ijbiomac.2022.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
A soluble soybean polysaccharide SSPS1 with a molecular weight of 2737 kDa was extracted and purified from soy whey. SSPS1 was composed of glucose (97.3 %) and a small amount of mannose (2.7 %). Structural analysis results suggested that SSPS1 had a → 6)-α-d-Glcp-(1 → glucan structure, with a trace amount of α-d-Glcp-(1 → connected to the main chain via O-3. In vitro immunological experiments suggested that SSPS1 enhanced the growth rate and phagocytic activity of RAW 264.7 macrophages. In addition, SSPS1 stimulated the secretion of cytokines (TNF-α, INF-β, IL-6 and IL-1β) as well as nitric oxide (NO) production through upregulating the expression of the related genes and proteins in RAW 264.7 cells. This study provided a new method for efficient utilization of soy whey, and the results indicate that SSPS1 extracted from soy whey could be used as a novel immunomodulator.
Collapse
Affiliation(s)
- Xuefang Guan
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350002, Fujian, China
| | - Qi Wang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350002, Fujian, China.
| | - Bin Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| | - Meiling Sun
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| | - Qi Zheng
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| | - Juqing Huang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350002, Fujian, China
| | - Gongti Lai
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| |
Collapse
|
8
|
Wang L, Lei X, Wang X. Efficacy and Safety of PD-1/PD-L1 Inhibitor Chemotherapy Combined with Lung Cancer Fang No. 1 in Relapsed and Refractory SCLC: A Retrospective Observational Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2848220. [PMID: 35586668 PMCID: PMC9110176 DOI: 10.1155/2022/2848220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Background Relapsed and refractory small cell lung cancer (SCLC) accounts for about 15% of all lung cancers. The prognosis of patients is poor. The 5-year survival rate is almost 0. The average survival time of patients who refuse to receive treatment is only 2-4 months. For patients with extensive-stage SCLC, the current first-line treatment regimens are mainly platinum-containing double-drug chemotherapy. Poside combined with cisplatin/carboplatin and irinotecan combined with cisplatin/carboplatin are commonly used clinical regimens for the treatment of patients with extensive-stage SCLC. Although SCLC is very sensitive to radiotherapy and chemotherapy, most patients will develop recurrence and metastasis after initial treatment. Therefore, it is necessary to study clinically effective therapeutic drugs for relapsed and refractory SCLC. Objective To investigate the relationship between programmed death receptor-1 (programmed death receptor-1 (PD-1)) and programmed death receptor-ligand 1 (programmed death-ligand 1 (PD-L1)) inhibitors and Lung Cancer No. 1 efficacy and safety of Lung Cancer Fang No. 1 in the treatment of relapsed and refractory SCLC. Methods 80 patients with refractory SCLC were selected and randomly divided into control group and treatment group with 40 cases in each group. Among them, the control group received PD-1/PD-L1 inhibitor chemotherapy, and the treatment group received PD-1/PD-L1 inhibitor chemotherapy combined with Lung Cancer Fang No. 1 treatment. The differences in immune and tumor marker levels, clinical efficacy, and prognostic complications between the two groups before and after treatment were observed and compared. Results Before treatment, there was no significant difference in clinical improvement between the two groups. After treatment, the clinical symptom scores and body weight changes in the treatment group were significantly improved. The clinical symptom scores in the treatment group were lower than those in the control group, but the body weight changes were higher than those in the control group. The difference was statistically significant (P < 0.05). Before treatment, there was no significant difference in the levels of tumor markers between the two groups. After treatment, the levels of CYFRA21-1, CA125, and VGEF in the treatment group were significantly lower than those in the control group, and the difference was statistically significant (P < 0.05). There was no significant difference in the immune level between the two groups before treatment (P > 0.05), while the differences in CD4+, CD3+, and CD4+/CD8+ after treatment were significant, and the treatment group was higher than the control group, with statistical significance (P < 0.05). After treatment, the clinical efficacy of the two groups was significantly improved. The DCR90.00% of the treatment group was significantly higher than that of the control group, 67.50%, and the difference was statistically significant (P < 0.05). The analysis of complications after treatment showed that fatigue, anorexia, hypertension, hand-foot syndrome, diarrhea, leukopenia, thrombocytopenia, and urinary protein in the treatment group were significantly lower than those in the control group, and the difference was statistically significant (P < 0.05). Conclusion PD-1/PD-L1 inhibitor chemotherapy combined with Lung Cancer Fang No. 1 has a good and safe effect on SCLC patients. It has a good curative effect in improving the clinical symptoms of patients. It can stabilize the tumor, inhibit the development of lung cancer, improve the body's cellular immune function, adjust the level and expression of tumor markers, improve the body's material metabolism, and restore the balance of yin and yang in the body.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Respiratory Endology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China
| | - Xiaoxia Lei
- Second Ward, Department of Respiratory and Critical Care Medicine, Wuhan No. 1 Hospital, China
| | - Xin Wang
- Department of Infectious Disease, Wuhan Asia General Hospital, China
| |
Collapse
|
9
|
Ma WP, Li HH, Liu M, Liu HB. Effects of simulated digestion in vitro on the structure and macrophages activation of fucoidan from Sargassum fusiforme. Carbohydr Polym 2021; 272:118484. [PMID: 34420743 DOI: 10.1016/j.carbpol.2021.118484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/11/2023]
Abstract
Molecular size and spatial structure affect the bioactivities of polysaccharides. SFF is a fucoidan extracted from Sargassum fusiforme. The possible changes of SFF affected by gastrointestinal tract and subsequently changes of its physicochemical property or its bioactivity have yet to be systematically investigated. Our results showed that DSFF, the gastrointestinal digestion product of SFF, has increased reducing sugar content, increased proportion of low molecular weight components, and a more clustered island-like morphology. Both SFF and DSFF activate RAW 264.7 macrophages evidenced by the increasing level of NO, intracellular ROS, and macrophages cytokines. Further investigation showed that DSFF induced M1 phenotype polarization in RAW 264.7 cells. DSFF also showed stronger macrophage activation and phenotype polarization than SFF. Our present work showed that SFF could be digested by simulated gastrointestinal environment in vitro and the digested product DSFF showed higher efficiency in macrophages activation and phenotype polarization.
Collapse
Affiliation(s)
- Wei-Ping Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hai-Hua Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Ming Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hong-Bing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
10
|
Chen F, Li J, Wang H, Ba Q. Anti-Tumor Effects of Chinese Medicine Compounds by Regulating Immune Cells in Microenvironment. Front Oncol 2021; 11:746917. [PMID: 34722304 PMCID: PMC8551633 DOI: 10.3389/fonc.2021.746917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
As the main cause of death in the world, cancer is one of the major health threats for humans. In recent years, traditional Chinese medicine has gained great attention in oncology due to the features of multi-targets, multi-pathways, and slight side effects. Moreover, lots of traditional Chinese medicine can exert immunomodulatory effects in vivo. In the tumor microenvironment, tumor cells, immune cells as well as other stromal cells often coexist. With the development of cancer, tumor cells proliferate uncontrollably, metastasize aggressively, and modulate the proportion and status of immune cells to debilitate the antitumor immunity. Reversal of immunosuppressive tumor microenvironment plays an essential role in cancer prevention and therapy. Immunotherapy has become the most promising strategy for cancer therapy. Chinese medicine compounds can stimulate the activation and function of immune cells, such as promoting the maturation of dendritic cells and inducing the differentiation of myeloid-derived suppressor cells to dendritic cells and macrophages. In the present review, we summarize and discuss the effects of Chinese medicine compounds on immune cells in the tumor microenvironment, including innate immune cells (dendritic cells, natural killer cells, macrophages, and myeloid-derived suppressor cells) and adaptive immune cells (CD4+/CD8+ T lymphocytes and regulatory T cells), and the various immunomodulatory roles of Chinese medicine compounds in cancer therapy such as improving tumor-derived inflammation, enhancing the immunity after surgery or chemotherapy, blocking the immune checkpoints, et al., aiming to provide more thoughts for the anti-tumor mechanisms and applications of Chinese medicine compounds in terms of tumor immunity.
Collapse
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|