1
|
Liu NN, Guo BH, Wang L, Wang XX, Wang X, Meng YL, Tang GX, Wang WM. The efficacy of ophiopogonanone B in treating the cough in mice infected with Mycoplasma pneumoniae. Front Pharmacol 2025; 16:1397543. [PMID: 40206065 PMCID: PMC11979145 DOI: 10.3389/fphar.2025.1397543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Ophiopogonanone B is a potent component of Qinbai Qingfei-concentrated pills (Qinbai), a new traditional Chinese medicine developed by our hospital for the treatment of Mycoplasma pneumoniae pneumonia in children. We aim to study how ophiopogonanone B influences the expression of transient receptor potential anchor protein 1 (TRPA1), substance P (SP), and calcitonin gene-related peptide (CGRP) to treat coughing in MP-infected mice. Methods Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was used to detect ophiopogonanone B. Molecular docking of ophiopogonanone B with TRPA1 was performed using Autodock Vina 1.1.2, and subsequent visualization and analysis of docking outcomes were facilitated using Pymol 2.1 and Discovery Studio. For the evaluation of the pathological structure and morphology, lung tissue sections from mice were prepared for animal experiments and subjected to hematoxylin-eosin (HE) and Masson staining. The impact of ophiopogonanone B on the protein and mRNA expression levels of TRPA1, SP, and CGRP in mouse lung tissue was assessed using immunohistochemistry and real-time polymerase chain reaction (RT-PCR). Results The samples acquired through Biacore fishing, which were identified and analyzed by UPLC-Q-TOF-MS, confirmed the presence of ophiopogonanone B. This compound exhibited robust and specific binding affinity for TRPA1. Histological staining using HE and Masson techniques revealed that the lung tissue morphology and structure in the ophiopogonanone B-treated group closely mirrored those observed in the blank group. Subsequent immunohistochemistry and RT-PCR revealed a significant reduction (P < 0.01 or P < 0.05) in the proteins and mRNA expression levels of TRPA1, SP, and CGRP in the lung tissue of mice treated with high and medium doses of ophiopogonanone B. Conclusion By decreasing the expression of TRPA1, SP, and CGRP in the lung tissues of mice afflicted with coughing due to M. pneumoniae infection, ophiopogonanone B effectively alleviated post-infection cough symptoms.
Collapse
Affiliation(s)
- Nan-Nan Liu
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Bai-Hui Guo
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lei Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiao-Xi Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xin Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yan-Li Meng
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Gui-Xin Tang
- Advanced Microscopy and Instrumentation Research Center, Harbin Institute of Technology, Harbin, China
| | - Wei-Ming Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Qin YJ, Zhang P, Zhang P, Li J, Yang Q, Sun JL, Liang YZ, Wang LL, Zhang LZ, Han Y. The impact of endogenous N/OFQ on DPN: Insights into lower limb blood flow regulation in rats. Neuropeptides 2025; 109:102492. [PMID: 39644710 DOI: 10.1016/j.npep.2024.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, often accompanied by impaired vascular endothelial function in the lower limbs. This dysfunction is characterized by a reduced vasodilatory response, leading to decreased blood flow in the lower limbs and ultimately contributing to the development of diabetic peripheral neuropathy. To delve deeper into this pathological process, the study employed bioinformatics to identify and analyze genes highly active in DPN. The investigation revealed that Membrane metallo-endopeptidase (MME) was effectively mitigated by its antagonist. Male Sprague-Dawley (SD) rats served as the model to systematically explore the intrinsic connection among the nociceptible/orphanin FQ-N/OFQ receptor (N/OFQ-NOP) system, femoral artery blood flow in the lower extremities, MME, and DPN. The rats were randomized into two groups: a control group and a DPN group induced by a single intraperitoneal injection of 55 mg/kg streptozotocin (STZ), with 6 rats in each group. The findings indicated that compared to the control group, the DPN group exhibited a significant reduction in femoral artery blood flow. This was accompanied by a notable increase in serum N/OFQ concentration, heightened expression of opioid-related nociceptive protein receptor 1 (OPRL1) and MME in femoral artery tissues of the lower limbs, and an elevated sciatic nerve stimulation threshold. These results suggest that the serum N/OFQ level in DPN rats is increased, which may promote the occurrence of peripheral neuropathy by up regulating MME and reducing peripheral flow distribution.
Collapse
Affiliation(s)
- Yuan-Jing Qin
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Po Zhang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Peng Zhang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Jing Li
- Department of Endocrine, Central Hospital of China Railway 12th Bureau Group, 182 Yingze Road, Taiyuan 030001, Shanxi, China
| | - Qixing Yang
- Department of Anesthesiology, Linfen People's Hospital, Linfen 041000, China
| | - Jun-Li Sun
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yu-Zhang Liang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Li-Li Wang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Lin-Zhong Zhang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yi Han
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China.
| |
Collapse
|
3
|
Xu Y, Cao S, Wang SF, Ma W, Gou XJ. Zhisou powder suppresses airway inflammation in LPS and CS-induced post-infectious cough model mice via TRPA1/TRPV1 channels. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117741. [PMID: 38224794 DOI: 10.1016/j.jep.2024.117741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhisou Powder (ZSP), a traditional Chinese medicine (TCM) prescription, has been widely used in the clinic for the treatment of post-infectious cough (PIC). However, the exact mechanism is not clear. AIM OF THE STUDY The aim of this study was to investigate the ameliorative effect of ZSP on PIC in mice. The possible mechanisms of action were screened based on network pharmacology, and the potential mechanisms were explored through molecular docking and in vivo experimental validation. MATERIALS AND METHODS Lipopolysaccharide (LPS) (80μg/50 μL) was used to induce PIC in mice, followed by daily exposure to cigarette smoke (CS) for 30 min for 30 d to establish PIC model. The effects of ZSP on PIC mice were observed by detecting the number of coughs and cough latency, peripheral blood and bronchoalveolar lavage fluid (BALF) inflammatory cell counts, enzyme-linked immunosorbent assay (ELISA), and histological analysis. The core targets and key pathways of ZSP on PIC were analyzed using network pharmacology, and TRPA1 and TRPV1 were validated using RT-qPCR and western blotting assays. RESULTS ZSP effectively reduced the number of coughs and prolonged the cough latency in PIC mice. Airway inflammation was alleviated by reducing the expression levels of the inflammatory mediators TNF-α and IL-1β. ZSP modulated the expression of Substance P, Calcitonin gene-related peptide (CGRP), and nerve growth factor (NGF) in BALF. Based on the results of network pharmacology, the mechanism of action of ZSP may exert anti-neurogenic airway-derived inflammation by regulating the expression of TRPA1 and TRPV1 through the natural active ingredients α-spinastero, shionone and didehydrotuberostemonine. CONCLUSION ZSP exerts anti-airway inflammatory effects through inhibition of TRPA1/TRPV1 channels regulating neuropeptides to alleviate cough hypersensitivity and has a favorable therapeutic effect on PIC model mice. It provides theoretical evidence for the clinical application of ZSP.
Collapse
Affiliation(s)
- Yuan Xu
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China; School of Pharmacy, Shaanxi Univesity of Chinese Medicine, Shaanxi, Xianyang 712046, China
| | - Shan Cao
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Shu-Fei Wang
- School of Pharmacy, Shaanxi Univesity of Chinese Medicine, Shaanxi, Xianyang 712046, China
| | - Wei Ma
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China.
| | - Xiao-Jun Gou
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China.
| |
Collapse
|
4
|
Luo J, Deng Y, Ding Y, Tang C, Wang M. Xiebai Zengye decoction improves respiratory function and attenuates inflammation in juvenile rats with postinfection cough via regulating ERK signaling pathway. Cell Biochem Funct 2023; 41:857-867. [PMID: 37606071 DOI: 10.1002/cbf.3835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
This study aimed to determine the effects of Xiebai Zengye decoction (XBZY) on airway inflammation and respiratory function in rats with postinfectious cough (PIC), and its regulatory effects on the extracellular signal-regulated kinase (ERK) signaling pathway. Compared with the normal group, the rats from the PIC group had significantly shortened expiratory time (TE) and enhanced pause (EEP), increased resistance (RT), and enhanced pause (Penh), along with increased levels of serum interleukin-4 (IL-4) and IL-6, and decreased levels of IL-10. The lung and colon tissues of rats from the PIC group showed histopathological changes, including inflammatory cell infiltration, damaged mucosal epithelium, and crypt structure, with significantly increased ERK mRNA and protein expression levels. Treatment with XBZY and montelukast sodium (MAS) improved the respiratory function and serum cytokine levels, reduced tissue inflammation, and decreased ERK mRNA and protein expression levels in the lung and colon tissues. In the lung tissues, XBZY treatment significantly decreased the expression of phosphorylated-ERK (p-ERK) protein, as well as p-MEK1/2, p-ERK1/2, and p-c-Fos proteins, while in the colon tissues, XBZY significantly decreased the expression of p-ERK1/2 and p-c-Fos proteins. However, MAS treatment only showed significant improvement in the lung tissue inflammation score, and the expression level of p-ERK protein in the lung tissue was decreased. In conclusion, the present study suggests that XBZY has a potential therapeutic effect on PIC by improving respiratory function and attenuating inflammation, and this effect may be associated with the inhibition of the ERK signaling pathway. These findings could provide a new direction for the development of treatments for PIC. However, further research is needed to elucidate the underlying molecular mechanisms of XBZY and to confirm its safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Jing Luo
- Department of Traditional Chinese Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- Department of Paediatrics, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yijue Deng
- Department of Paediatrics, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yi Ding
- School of Rehabilitation, Changsha Social Work College, Changsha, China
| | - Chenguang Tang
- Department of Traditional Chinese Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Mengqing Wang
- Department of Paediatrics, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Wei L, Hongping H, Chufang L, Cuomu M, Jintao L, Kaiyin C, Lvyi C, Weiwu C, Zuguang Y, Nanshan Z. Effects of Shiwei Longdanhua formula on LPS induced airway mucus hypersecretion, cough hypersensitivity, oxidative stress and pulmonary inflammation. Biomed Pharmacother 2023; 163:114793. [PMID: 37121151 DOI: 10.1016/j.biopha.2023.114793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Shiwei Longdanhua Granule (SWLDH) is a classic Tibetan medicine (TM) ranking in the top 20 Chinese patent medicines in prescription rate to treat respiratory diseases like pneumonia, acute and chronic tracheobronchitis, acute exacerbation of COPD and bronchial asthma in solution of inflammation, cough and phlegm obstruction in clinical practice. However, its systematic pharmacological mechanisms have not been elucidated yet. Here, we studied the therapeutic efficacy of SWLDH in treatment of acute respiratory diseases in BALB/c mice by comprehensive analysis of airway inflammation, oxidative stress, mucus hypersecretion, cough hypersensitivities and indicators associated with the development of chronic diseases. Our results show that SWLDH might exhibit its inhibitory effects on pulmonary inflammation by interference with arachidonic acid (AA) metabolism pathways. Oxidative stress that highly related to the degree of tissue injury could be alleviated by enhancing the reductive activities of glutathione redox system, thioredoxin system and the catalytic activities of catalase and superoxide dismutase (SOD) after SWLDH treatment. In addition, SWLDH could significantly abrogate the mucus hypersecretion induced bronchiole obstruction by inactivate the globlet cells and decrease the secretion of gel-forming mucins (MUC5AC and MUC5B) under pathological condition, demonstrating its mucoactive potency. SWLDH also showed reversed effects on the release of neuropeptides that are responsible for airway sensory hypersensitivity. Simultaneously observed inhibition of calcium influx, reduction in in vivo biosynthesis of acetylcholine and the recovery of the content of cyclic adenosine monophosphate (cAMP) might collaboratively contribute to cause airway smooth muscle cells (ASMCs) relexation. These findings indicated that SWLDH might exhibited antitussive potency via suppression of the urge to cough and ASMCs contraction. Moreover, SWLDH might affect airway remodeling. We found SWLDH could retard the elevation of TGF-β1 and α-SMA, which are important indicators for hyperplasia and contraction during the progression of the chronic airway inflammatory diseases like COPD and asthma.
Collapse
Affiliation(s)
- Liu Wei
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hou Hongping
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Mingji Cuomu
- The University of Tibetan Medicine, Lhasa, China
| | - Li Jintao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Cai Kaiyin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Chen Lvyi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Weiwu
- Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Ye Zuguang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhong Nanshan
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Hu Q, Tao R, Hu X, Wu H, Xu J. Effects of piperlonguminine on lung injury in severe acute pancreatitis <em>via</em> the TLR4/NF-κB pathway. Eur J Histochem 2023; 67. [PMID: 36951266 PMCID: PMC10080291 DOI: 10.4081/ejh.2023.3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
Acute pancreatitis is an inflammatory response in the pancreas, involving activation of pancreatic enzymes. Severe acute pancreatitis (SAP) often causes systemic complications that affect distant organs, including the lungs. The aim of this study was to explore the therapeutic potential of piperlonguminine on SAP-induced lung injury in rat models. Acute pancreatitis was induced in rats by repetitive injections with 4% sodium taurocholate. Histological examination and biochemical assays were used to assess the severity of lung injury, including tissue damage, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), reactive oxygen species (ROS), and inflammatory cytokines. We found that piperlonguminine significantly ameliorated pulmonary architectural distortion, hemorrhage, interstitial edema, and alveolar thickening in rats with SAP. In addition, NOX2, NOX4, ROS, and inflammatory cytokine levels in pulmonary tissues were notably decreased in piperlonguminine-treated rats. Piperlonguminine also attenuated the expression levels of toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB). Together, our findings demonstrate for the first time that piperlonguminine can ameliorate acute pancreatitis-induced lung injury via inhibitory modulation of inflammatory responses by suppression of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qian Hu
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Ran Tao
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Xiaoyun Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Haibo Wu
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Jianjun Xu
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| |
Collapse
|
7
|
Liang R, Tong X, Dong Z, Qin W, Fan L, Bai Z, Zhang Z, Xiang T, Wang Z, Tan N. Suhuang antitussive capsule ameliorates post-infectious cough in mice through AhR-Nrf2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114664. [PMID: 34555451 DOI: 10.1016/j.jep.2021.114664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Suhuang antitussive capsule (SH capsule), a typical traditional Chinese medicines (TCMs) compound, is widely used for the treatment of post-infectious cough (PIC) in the clinic. Our previous studies have demonstrated that SH capsule possesses significant ameliorative effects on cough variant asthma (CVA), sputum obstruction and airway remodeling. AIM OF THE STUDY This study is designed to investigate the ameliorative effects and potential mechanisms of SH capsule on PIC in mice. MATERIALS AND METHODS To establish the PIC model, ICR mice were induced by lipopolysaccharide (LPS) (3 mg/kg) once, followed by cigarettes smoke (CS) exposure for 30 min per day for 30 days. Mice were intragastrically (i.g.) administrated with SH capsule at the doses of 3.5, 7, 14 g/kg each day for 2 weeks since the 24th day. The number of coughs, coughs latencies, enzyme-linked immunosorbent assay (ELISA) and histological analysis were used to investigate the effects of SH capsule on PIC mice. Quantitative-polymerase chain reaction (Q-PCR) and western blotting were conducted to evaluate the levels of mRNA and proteins associated with Aryl hydrocarbon receptor (AhR)-NF-E2-related factor 2 (Nrf2) pathway. Superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity (T-AOC) assays were performed to evaluate the oxidative stress. A549 cells were used to investigate the ameliorative effects of SH capsule in vitro. RESULTS SH capsule effectively diminished the number of coughs and extended coughs latencies in PIC mice. The airway inflammation was alleviated by decreasing the expression levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Moreover, SH capsule dose-dependently activated AhR-Nrf2 pathway and induced the nuclear translocation in vitro and in vivo. Besides, SH capsule significantly increased the levels of SOD, GSH and T-AOC in mice. CONCLUSION Our study demonstrates that SH capsule ameliorates airway inflammation-associated PIC in mice through activating AhR-Nrf2 pathway and consequently alleviating inflammatory responses and oxidative stress.
Collapse
Affiliation(s)
- Rongyao Liang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Xiyang Tong
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Zhikui Dong
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, Beijing, 102206, PR China; Jiangsu Longfengtang Traditional Chinese Medicine Co., Ltd., Yangtze River Pharmaceutical Group, Taizhou, 225321, PR China.
| | - Weiwei Qin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Lingling Fan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ziyu Bai
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Zhihao Zhang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ting Xiang
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, Beijing, 102206, PR China.
| | - Zhen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|