1
|
Xu X, Yan Y, Yang Z, Zhang T. Down-regulation of RIPK3 prevents depression-like behaviors by restoring the synaptic plasticity and suppressing neuronal loss. J Affect Disord 2024; 365:213-221. [PMID: 39154980 DOI: 10.1016/j.jad.2024.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The excessive secretion of glucocorticoids resulting from the overactivation of the hypothalamic-pituitary-adrenal axis is a crucial factor in the pathogenesis of depression. RIPK3 plays a significant role in apoptosis and necroptosis. Glucocorticoids have been implicated in directly regulating the expression of RIPK3, leading to apoptosis and necroptosis of osteoblasts. This suggests that RIPK3 may contribute to cell death induced by glucocorticoids. However, the precise involvement of RIPK3 in glucocorticoid-induced depression remains poorly understood. METHODS In this study, a mouse model of depression was established by repeated corticosterone injections to examine the impact of RIPK3 knockdown on depression-like behavior. Additionally, a corticosterone-induced HT22 injury model was also established to investigate the role of RIPK3 in corticosterone-induced neuronal cell death and underlying mechanisms. RESULTS Our findings demonstrate that hippocampal RIPK3 knockdown effectively ameliorated depression-related symptoms and restored synaptic plasticity impairment caused by corticosterone. Furthermore, treatment with the RIPK3 inhibitor GSK872 in vitro successfully mitigated corticosterone-induced HT22 cell death. Additionally, the administration of a free radical scavenger alleviated neuronal death and effectively suppressed the expression of corticosterone-induced RIPK3. LIMITATIONS The limitation of this study is that only the changes of RIPK3 in the hippocampus of depressed male animals were studied. CONCLUSIONS These results suggest that corticosterone may induce RIPK3-dependent neuronal cell death and impair synaptic plasticity through the generation of high levels of oxidative stress, ultimately leading to depression-like behavior.
Collapse
Affiliation(s)
- Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300130 Tianjin, China; College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Yuxing Yan
- College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Tao Zhang
- College of Life Sciences, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
2
|
Xue C, He Z, Zeng M, Wang Z, Chen Q, Qin F, Chen M, Ye H, Chen J. The Protective Effects of Polygala tenuifolia and Tenuifolin on Corticosterone-Evoked Ferroptosis, Oxidative Stress, and Neuroinflammation: Insights from Molecular Dynamics Simulations and In Vitro Experiments. Foods 2024; 13:3358. [PMID: 39517142 PMCID: PMC11545101 DOI: 10.3390/foods13213358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Excessive stress is a well-established contributor to neurological damage, insomnia, and depression, imposing a significant burden on individuals and society. This underscores the urgent need for effective stress-relief strategies. The main purpose of this study was to explore the protective effects of Polygala tenuifolia (PT) and its bioactive compound, tenuifolin, against corticosterone-induced neurotoxicity, with a focus on ferroptosis, oxidative stress, and neuroinflammation. Both PT extracts and tenuifolin mitigated corticosterone-induced cellular damage. Tenuifolin reversed the corticosterone-induced dysregulation of ferroptosis-associated proteins, such as SLC7A11, GPX4, and Nrf2, leading to a marked reduction in ferroptosis levels. Molecular dynamics simulations revealed that corticosterone significantly altered the conformation and binding energy of the SLC7A11/SLC3A2 complex, critical for ferroptosis regulation. These changes were reversed by tenuifolin. Additionally, tenuifolin alleviated corticosterone-induced oxidative stress and neuroinflammation, both of which accelerated ferroptosis. In conclusion, these results indicate that tenuifolin attenuates corticosterone-induced neurotoxicity by modulating ferroptosis, oxidative stress, and neuroinflammation. This study provides a theoretical foundation for the application of PT and tenuifolin in stress-induced nerve damage.
Collapse
Affiliation(s)
- Chaoyi Xue
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingmin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore;
| | - Hui Ye
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore;
| | - Jie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Kostanda E, Musa S, Pereman I. Unveiling the Chemical Composition and Biofunctionality of Hericium spp. Fungi: A Comprehensive Overview. Int J Mol Sci 2024; 25:5949. [PMID: 38892137 PMCID: PMC11172836 DOI: 10.3390/ijms25115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, research on mushrooms belonging to the Hericium genus has attracted considerable attention due to their unique appearance and well-known medicinal properties. These mushrooms are abundant in bioactive chemicals like polysaccharides, hericenones, erinacines, hericerins, resorcinols, steroids, mono- and diterpenes, and corallocins, alongside essential nutrients. These compounds demonstrate beneficial bioactivities which are related to various physiological systems of the body, including the digestive, immune, and nervous systems. Extensive research has been conducted on the isolation and identification of numerous bioactive chemicals, and both in vitro and in vivo studies have confirmed their antimicrobial, antioxidant, immunomodulatory, antidiabetic, anticholesterolemic, anticancer, and neuroprotective properties. Therefore, this review aims to provide a comprehensive summary of the latest scientific literature on the chemical composition and secondary metabolites profile of Hericium spp. through an introduction to their chemical characteristics, speculated biosynthesis pathways for key chemical families, potential toxicological aspects, and a detailed description of the recent updates regarding the bioactivity of these metabolites.
Collapse
Affiliation(s)
- Elizabeth Kostanda
- Molecular Biology and Analytics of Medicinal Mushrooms Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
| | - Sanaa Musa
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Idan Pereman
- Molecular Biology and Analytics of Medicinal Mushrooms Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
| |
Collapse
|
4
|
Nguyen LTH, Nguyen NPK, Tran KN, Shin HM, Yang IJ. Intranasal administration of the essential oil from Perillae Folium ameliorates social defeat stress-induced behavioral impairments in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117775. [PMID: 38224793 DOI: 10.1016/j.jep.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perillae Folium, the leaves and twigs of Perilla frutescens (L.) Britton, has been included in many traditional Chinese medicine herbal formulas to treat depression. However, the precise antidepressant mechanism of the essential oil from Perillae Folium (PFEO) has not been fully investigated. AIM OF THE STUDY To assess the effects and potential mechanisms of PFEO on depression using animal models and network pharmacology analysis. MATERIALS AND METHODS PFEO was intranasally administered to a mouse model of social defeat stress (SDS). The antidepressant effects of PFEO on SDS-induced mice were evaluated using behavioral tests. Enzyme-linked immunosorbent assay (ELISA) and western blot were performed to measure the levels of depression-related biomarkers in the hippocampus and serum of the mice. The chemical compounds of PFEO were determined using gas chromatography-mass spectrometry (GC-MS). Network pharmacology and molecular docking analyses were conducted to investigate the potential bioactive components of PFEO and the mechanisms underlying the antidepressant effects. To validate the mechanisms of the bioactive compounds, in vitro models using PC12 and BV2 cells were established and the blood-brain barrier (BBB) permeability was evaluated. RESULTS The intranasal administration of PFEO suppressed SDS-induced depression in mice by increasing the time spent in the social zone and the social interactions in the social interaction test and by decreasing the immobility time in the tail suspension and forced swimming tests. Moreover, the PFEO treatment reduced the SDS-induced anxiety-like behavior, as inferred from the increased activity in the central zone observed in the open field test and in the open arms observed in the elevated plus maze test. PFEO administration recovered the SDS-induced decrease in the levels of 5-HT, NE, gamma-aminobutyric acid (GABA), and p-ERK in the hippocampus of mice. Furthermore, the increased serum corticosterone level was also attenuated by the PFEO treatment. A total of 21 volatile compounds were detected in PFEO using GC-MS, among which elemicin (15.52%), apiol (15.16%), and perillaldehyde (12.79%) were the most abundant ones. The PFEO compounds targeted 32 depression-associated genes, which were mainly related to neural cells and neurotransmission pathways. Molecular docking indicated good binding affinities between the bioactive components of PFEO (apiol, β-caryophyllene, elemicin, and myristicin) and the key targets, including ACHE, IL1B, IL6, MAOB, SLC6A2, SLC6A3, SLC6A4, and tumor necrosis factor. Among the four compounds, β-caryophyllene, elemicin, and myristicin were more effective in reducing neurotoxicity and neuroinflammation. Elemicin showed the highest BBB permeability rate. CONCLUSIONS This study shows the antidepressant activities of PFEO in an SDS-induced mouse model and suggests its potential mechanisms of action: regulation of the corticosterone levels, hippocampal neurotransmitters, and ERK signaling. Apiol, β-caryophyllene, elemicin, and myristicin may be the main contributors to the observed effects induced by PFEO. Further studies are needed to fully elucidate the underlying mechanisms and the main PFEO bioactive components.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - Khoa Nguyen Tran
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - Heung-Mook Shin
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - In-Jun Yang
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
5
|
Szućko-Kociuba I, Trzeciak-Ryczek A, Kupnicka P, Chlubek D. Neurotrophic and Neuroprotective Effects of Hericium erinaceus. Int J Mol Sci 2023; 24:15960. [PMID: 37958943 PMCID: PMC10650066 DOI: 10.3390/ijms242115960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Hericium erinaceus is a valuable mushroom known for its strong bioactive properties. It shows promising potential as an excellent neuroprotective agent, capable of stimulating nerve growth factor release, regulating inflammatory processes, reducing oxidative stress, and safeguarding nerve cells from apoptosis. The active compounds in the mushroom, such as erinacines and hericenones, have been the subject of research, providing evidence of their neuroprotective effects. Further research and standardization processes for dietary supplements focused on H. erinaceus are essential to ensuring effectiveness and safety in protecting the nervous system. Advancements in isolation and characterization techniques, along with improved access to pure analytical standards, will play a critical role in achieving standardized, high-quality dietary supplements based on H. erinaceus. The aim of this study is to analyze the protective and nourishing effects of H. erinaceus on the nervous system and present the most up-to-date research findings related to this topic.
Collapse
Affiliation(s)
- Izabela Szućko-Kociuba
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Alicja Trzeciak-Ryczek
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (P.K.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (P.K.); (D.C.)
| |
Collapse
|
6
|
Yu H, Yang X, Xie F, Cao G, Tang L. Effect of comfort nursing in the perioperative period of free flap transplantation to repair the defects after surgery for malignant head and neck tumors. Medicine (Baltimore) 2023; 102:e35114. [PMID: 37713903 PMCID: PMC10508440 DOI: 10.1097/md.0000000000035114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
To explore the effect of comfort nursing in the perioperative period of free flap transplantation to repair defects of malignant head and neck tumors. This retrospective study included 242 patients with postoperative defects of malignant head and neck tumors repaired using free flap transplantation from December 2017 to December 2022. Among them, 113 patients received routine nursing and were included in the control group, and 129 patients received comfort nursing and were included in the observation group. The perioperative indexes of skin flap transplantation, skin flap necrosis, hospital stay, and cortisol levels were compared. Albumin and pre-albumin levels were compared 1 hour before and 24 hours after surgery. The nursing quality, Self-Rating Depression Scale and Self-Rating Anxiety Scale scores, and nursing satisfaction were compared between the 2 groups. The success rate of skin flap transplantation in the observation group was significantly higher than that in the control group, whereas the rates of skin flap necrosis, length of stay, and cortisol levels were significantly lower in the observation group than in the control group. The Albumin and pre-albumin levels in the observation group were significantly higher than those in the control group 24 hours after surgery. The complication rate was significantly lower in the observation group than in the control group. The Self-Rating Depression Scale and Self-Rating Anxiety Scale scores in the observation group were significantly lower than those in the control group 24 hours after surgery. The satisfaction with nursing was significantly higher in the observation group than in the control group. Comfort nursing improved the success rate of free flap transplantation, reduced complications, reduced stress, improved nutritional, and psychological status of patients during the perioperative period, and improved nursing quality and patient satisfaction with nursing.
Collapse
Affiliation(s)
- Haidi Yu
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xishuang Yang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fei Xie
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guihua Cao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lina Tang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
7
|
Tamrakar S, Wang D, Hiraki E, Han C, Ruan Y, Allam AE, Amen Y, Katakura Y, Shimizu K. Deacylated Derivative of Hericenone C Treated by Lipase Shows Enhanced Neuroprotective Properties Compared to Its Parent Compound. Molecules 2023; 28:molecules28114549. [PMID: 37299024 DOI: 10.3390/molecules28114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Hericium erinaceus, a mushroom species commonly known as Yamabushitake in Japan, is known to have a stimulatory effect on neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Hericenone C, a meroterpenoid with palmitic acid as the fatty acid side chain, is reported to be one such stimulant. However, according to the structure of the compound, the fatty acid side chain seems highly susceptible to lipase decomposition, under in vivo metabolic conditions. To study this phenomenon, hericenone C from the ethanol extract of the fruiting body was subjected to lipase enzyme treatment and observed for changes in the chemical structure. The compound formed after the lipase enzyme digestion was isolated and identified using LC-QTOF-MS combined with 1H-NMR analysis. It was found to be a derivative of hericenone C without its fatty acid side chain and was named deacylhericenone. Interestingly, a comparative investigation of the neuroprotective properties of hericenone C and deacylhericenone showed that the BDNF mRNA expression in human astrocytoma cells (1321N1) and the protection against H2O2-induced oxidative stress was considerably higher in the case of deacylhericenone. These findings suggest that the stronger bioactive form of the hericenone C compound is in fact deacylhericenone.
Collapse
Affiliation(s)
- Sonam Tamrakar
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Dongmei Wang
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Eri Hiraki
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Chunguang Han
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yang Ruan
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ahmed E Allam
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Yhiya Amen
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yoshinori Katakura
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Wong KH, Lim LW, Mohd Hisam NS, Kamarudin MNA, Lakshmanan H. Editorial: Natural products for neuroprotection and neuroregeneration. Front Pharmacol 2023; 14:1209297. [PMID: 37266142 PMCID: PMC10230221 DOI: 10.3389/fphar.2023.1209297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | | | - Hariprasath Lakshmanan
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
9
|
Lew SY, Mohd Hisam NS, Phang MWL, Syed Abdul Rahman SN, Poh RYY, Lim SH, Kamaruzzaman MA, Chau SC, Tsui KC, Lim LW, Wong KH. Adenosine Improves Mitochondrial Function and Biogenesis in Friedreich's Ataxia Fibroblasts Following L-Buthionine Sulfoximine-Induced Oxidative Stress. BIOLOGY 2023; 12:biology12040559. [PMID: 37106759 PMCID: PMC10136261 DOI: 10.3390/biology12040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023]
Abstract
Adenosine is a nucleoside that is widely distributed in the central nervous system and acts as a central excitatory and inhibitory neurotransmitter in the brain. The protective role of adenosine in different pathological conditions and neurodegenerative diseases is mainly mediated by adenosine receptors. However, its potential role in mitigating the deleterious effects of oxidative stress in Friedreich's ataxia (FRDA) remains poorly understood. We aimed to investigate the protective effects of adenosine against mitochondrial dysfunction and impaired mitochondrial biogenesis in L-buthionine sulfoximine (BSO)-induced oxidative stress in dermal fibroblasts derived from an FRDA patient. The FRDA fibroblasts were pre-treated with adenosine for 2 h, followed by 12.50 mM BSO to induce oxidative stress. Cells in medium without any treatments or pre-treated with 5 µM idebenone served as the negative and positive controls, respectively. Cell viability, mitochondrial membrane potential (MMP), aconitase activity, adenosine triphosphate (ATP) level, mitochondrial biogenesis, and associated gene expressions were assessed. We observed disruption of mitochondrial function and biogenesis and alteration in gene expression patterns in BSO-treated FRDA fibroblasts. Pre-treatment with adenosine ranging from 0-600 µM restored MMP, promoted ATP production and mitochondrial biogenesis, and modulated the expression of key metabolic genes, namely nuclear respiratory factor 1 (NRF1), transcription factor A, mitochondrial (TFAM), and NFE2-like bZIP transcription factor 2 (NFE2L2). Our study demonstrated that adenosine targeted mitochondrial defects in FRDA, contributing to improved mitochondrial function and biogenesis, leading to cellular iron homeostasis. Therefore, we suggest a possible therapeutic role for adenosine in FRDA.
Collapse
Affiliation(s)
- Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Michael Weng Lok Phang
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Rozaida Yuen Ying Poh
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siew Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sze Chun Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka Chun Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Chau SC, Chong PS, Jin H, Tsui KC, Khairuddin S, Tse ACK, Lew SY, Tipoe GL, Lee CW, Fung ML, Wong KH, Lim LW. Hericium erinaceus Promotes Anti-Inflammatory Effects and Regulation of Metabolites in an Animal Model of Cerebellar Ataxia. Int J Mol Sci 2023; 24:6089. [PMID: 37047062 PMCID: PMC10094689 DOI: 10.3390/ijms24076089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Cerebellar ataxia is a neurodegenerative disorder with no definitive treatment. Although previous study demonstrated the neuroprotective effects of Hericium erinaceus (H.E.), the mechanisms of H.E. treatment on the neuroinflammatory response, neurotransmission, and related metabolites remain largely unknown. We demonstrated that 3-AP rats treated with 25 mg/kg H.E. extracts had improved motor coordination and balance in the accelerated rotarod and rod tests. We showed that the H.E. treatment upregulated the expression of Tgfb1, Tgfb2, and Smad3 genes to levels comparable to those in the non-3-AP control group. Interestingly, we also observed a significant correlation between Tgfb2 gene expression and rod test performance in the 3-AP saline group, but not in the non-3-AP control or H.E.+3-AP groups, indicating a relationship between Tgfb2 gene expression and motor balance in the 3-AP rat model. Additionally, we also found that the H.E. treatment increased mitochondrial COX-IV protein expression and normalized dopamine-serotonin neurotransmission and metabolite levels in the cerebellum of the H.E.+3-AP group compared to the 3-AP saline group. In conclusion, our findings suggest that the H.E. treatment improved motor function in the 3-AP rat model, which was potentially mediated through neuroprotective mechanisms involving TGFB2-Smad3 signaling via normalization of neurotransmission and metabolic pathways.
Collapse
Affiliation(s)
- Sze Chun Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pit Shan Chong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongkai Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka Chun Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sharafuddin Khairuddin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anna Chung Kwan Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sze Yuen Lew
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - George Lim Tipoe
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kah Hui Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Deshmukh D, Hsu YF, Chiu CC, Jadhao M, Hsu SCN, Hu SY, Yang SH, Liu W. Antiangiogenic potential of Lepista nuda extract suppressing MAPK/p38 signaling-mediated developmental angiogenesis in zebrafish and HUVECs. Biomed Pharmacother 2023; 159:114219. [PMID: 36621144 DOI: 10.1016/j.biopha.2023.114219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The medicinal properties of natural/edible plant products and their use are popular in traditional practice owing to their nutritional contents with little to no side effects. Lepista nuda (L. nuda), an edible mushroom (Clitocybe nuda, commonly known as blewit), has attracted researchers to evaluate its contents and the mechanism of its activities. In the current study, we focused on evaluating the antiangiogenic effects of L. nuda water extract on zebrafish development and in vitro human umbilical vein endothelial cell (HUVEC) tube formation. Bioactive components such as ergothioneine, eritadenine, and adenosine were identified and quantified by HPLC analysis. The L. nuda extract showed antiangiogenic properties and inhibited intersegmental vessel (ISV), caudal vein plexus (CVP), hyaloid vessel (HV), and subintestinal vessel (SIV) development in Tg (fli1: EGFP) zebrafish embryos. The expression of angiogenesis-related genes (vegfaa, kdrl, vegfba, flt1, kdr) was affected following L. nuda extract treatment. L. nuda extract attenuated in vitro HUVEC tube formation, migration, and invasion. Furthermore, inhibition of MAPK/p38 signaling and depletion of proangiogenic genes, including growth factors (fgf, ang2, and vegfa); primary and accessory receptors (tie2, vegfr2, and eng); MMPs (mmp1 and mmp2); and cytokines (il-1α, il-1β, il-6, and tnf-α) was observed in HUVECs following L. nuda treatment. An in vivo zebrafish xenograft assay showed that L. nuda extract inhibited HuCCT1 cell-induced SIV sprouting in HuCCT1-injected embryos. Collectively, the results suggest that L. nuda could be a potential inhibitor of angiogenesis limiting cancer progression.
Collapse
Affiliation(s)
- Dhanashri Deshmukh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ya Fen Hsu
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115, Taiwan.
| | - Mahendra Jadhao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| | - Shu-Hui Yang
- Department of Management and Utilization, Fengshan Tropical Horticultural Experimental Branch, Taiwan Agricultural Research Institute, Kaohsiung 807, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
12
|
Correia AS, Cardoso A, Vale N. Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin, Neurogenesis and Synaptic Plasticity. Antioxidants (Basel) 2023; 12:470. [PMID: 36830028 PMCID: PMC9951986 DOI: 10.3390/antiox12020470] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Depression is a prevalent, complex, and highly debilitating disease. The full comprehension of this disease is still a global challenge. Indeed, relapse, recurrency, and therapeutic resistance are serious challenges in the fight against depression. Nevertheless, abnormal functioning of the stress response, inflammatory processes, neurotransmission, neurogenesis, and synaptic plasticity are known to underlie the pathophysiology of this mental disorder. The role of oxidative stress in disease and, particularly, in depression is widely recognized, being important for both its onset and development. Indeed, excessive generation of reactive oxygen species and lack of efficient antioxidant response trigger processes such as inflammation, neurodegeneration, and neuronal death. Keeping in mind the importance of a detailed study about cellular and molecular mechanisms that are present in depression, this review focuses on the link between oxidative stress and the stress response, neuroinflammation, serotonergic pathways, neurogenesis, and synaptic plasticity's imbalances present in depression. The study of these mechanisms is important to lead to a new era of treatment and knowledge about this highly complex disease.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
13
|
Yang F, Chen Y, Xiao Y, Jiang H, Jiang Z, Yang M, Li M, Su Y, Yan Z, Lin Y, Li D. pH-sensitive molybdenum (Mo)-based polyoxometalate nanoclusters have therapeutic efficacy in inflammatory bowel disease by counteracting ferroptosis. Pharmacol Res 2023; 188:106645. [PMID: 36610695 DOI: 10.1016/j.phrs.2023.106645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Current therapeutic drugs for ulcerative colitis (UC) remained inadequate due to drug dependence and unacceptable adverse events. Reactive oxygen species (ROS) played a critical role in the occurrence and development of UC, which most likely benefited from treatment in scavenging ROS. In this study, we developed a pH-sensitive molybdenum-based polyoxometalate (POM) nanocluster, which might contribute to site specific colonic delivery and enhance systemic efficacy of UC treatment. Our results demonstrated that POM displayed robust ROS scavenging ability in vitro. POM could significantly alleviate the enteric symptoms and inflammatory indicators in DSS-induced UC mouse models. Flow cytometry showed an effective diminishment of macrophages, neutrophils and T cells infiltration after POM administration in UC models. Also, for the first time, we demonstrated that POM interfered with metabolic pathway associated to oxidative stress and partially improved the abnormal production of intestinal metabolites in UC to some extent. Benefiting from the ROS scavenging ability, POM attenuated ferroptosis in DSS induced UC, as evidenced by increase of GSH, down-expression of GPX4 and improvement in mitochondrial morphological changes. Meanwhile, there were no side effects on normal tissues. Thus, our powerful therapeutic effects pioneered the application of POM for safer and more effective POM-based UC therapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yuechuan Chen
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yitai Xiao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hailong Jiang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zebo Jiang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Meilin Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Mengzhu Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yonghui Su
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Zhixiang Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province 519000, China.
| | - Yong Lin
- Department of Psychiatry, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| |
Collapse
|
14
|
Sun Y, Zhao J, Rong J. Dissecting the molecular mechanisms underlying the antidepressant activities of herbal medicines through the comprehensive review of the recent literatures. Front Psychiatry 2022; 13:1054726. [PMID: 36620687 PMCID: PMC9813794 DOI: 10.3389/fpsyt.2022.1054726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Depression is clinically defined as a mood disorder with persistent feeling of sadness, despair, fatigue, and loss of interest. The pathophysiology of depression is tightly regulated by the biosynthesis, transport and signaling of neurotransmitters [e.g., serotonin, norepinephrine, dopamine, or γ-aminobutyric acid (GABA)] in the central nervous system. The existing antidepressant drugs mainly target the dysfunctions of various neurotransmitters, while the efficacy of antidepressant therapeutics is undermined by different adverse side-effects. The present review aimed to dissect the molecular mechanisms underlying the antidepressant activities of herbal medicines toward the development of effective and safe antidepressant drugs. Our strategy involved comprehensive review and network pharmacology analysis for the active compounds and associated target proteins. As results, 45 different antidepressant herbal medicines were identified from various in vivo and in vitro studies. The antidepressant mechanisms might involve multiple signaling pathways that regulate neurotransmitters, neurogenesis, anti-inflammation, antioxidation, endocrine, and microbiota. Importantly, herbal medicines could modulate broader spectrum of the cellular pathways and processes to attenuate depression and avoid the side-effects of synthetic antidepressant drugs. The present review not only recognized the antidepressant potential of herbal medicines but also provided molecular insights for the development of novel antidepressant drugs.
Collapse
Affiliation(s)
- Yilu Sun
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jia Zhao
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jianhui Rong
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
15
|
The Monkey Head Mushroom and Memory Enhancement in Alzheimer’s Disease. Cells 2022; 11:cells11152284. [PMID: 35892581 PMCID: PMC9331832 DOI: 10.3390/cells11152284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, and no effective treatments are available to treat this disorder. Therefore, researchers have been investigating Hericium erinaceus, or the monkey head mushroom, an edible medicinal mushroom, as a possible treatment for AD. In this narrative review, we evaluated six preclinical and three clinical studies of the therapeutic effects of Hericium erinaceus on AD. Preclinical trials have successfully demonstrated that extracts and bioactive compounds of Hericium erinaceus have potential beneficial effects in ameliorating cognitive functioning and behavioral deficits in animal models of AD. A limited number of clinical studies have been conducted and several clinical trials are ongoing, which have thus far shown analogous outcomes to the preclinical studies. Nonetheless, future research on Hericium erinaceus needs to focus on elucidating the specific neuroprotective mechanisms and the target sites in AD. Additionally, standardized treatment parameters and universal regulatory systems need to be established to further ensure treatment safety and efficacy. In conclusion, Hericium erinaceus has therapeutic potential and may facilitate memory enhancement in patients with AD.
Collapse
|
16
|
Discovery of Therapeutics Targeting Oxidative Stress in Autosomal Recessive Cerebellar Ataxia: A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15060764. [PMID: 35745683 PMCID: PMC9228961 DOI: 10.3390/ph15060764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of rare neurodegenerative inherited disorders. The resulting motor incoordination and progressive functional disabilities lead to reduced lifespan. There is currently no cure for ARCAs, likely attributed to the lack of understanding of the multifaceted roles of antioxidant defense and the underlying mechanisms. This systematic review aims to evaluate the extant literature on the current developments of therapeutic strategies that target oxidative stress for the management of ARCAs. We searched PubMed, Web of Science, and Science Direct Scopus for relevant peer-reviewed articles published from 1 January 2016 onwards. A total of 28 preclinical studies fulfilled the eligibility criteria for inclusion in this systematic review. We first evaluated the altered cellular processes, abnormal signaling cascades, and disrupted protein quality control underlying the pathogenesis of ARCA. We then examined the current potential therapeutic strategies for ARCAs, including aromatic, organic and pharmacological compounds, gene therapy, natural products, and nanotechnology, as well as their associated antioxidant pathways and modes of action. We then discussed their potential as antioxidant therapeutics for ARCAs, with the long-term view toward their possible translation to clinical practice. In conclusion, our current understanding is that these antioxidant therapies show promise in improving or halting the progression of ARCAs. Tailoring the therapies to specific disease stages could greatly facilitate the management of ARCAs.
Collapse
|
17
|
Edible Mushrooms as a Potential Component of Dietary Interventions for Major Depressive Disorder. Foods 2022; 11:foods11101489. [PMID: 35627059 PMCID: PMC9141008 DOI: 10.3390/foods11101489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022] Open
Abstract
Dietary interventions for people suffering from major depressive disorder (MDD) are an ongoing field of research. In this article, we present a comprehensive background for understanding the possibility of using edible medicinal mushrooms as an adjunctive treatment for MDD. We start with a brief history of MDD, its diagnosis, epidemiology and treatment, and the effects of diet on depression symptoms, followed by a review of neurobiological, behavioral, and clinical studies of medicinal mushrooms. We specifically highlight the results of preclinical and clinical studies on dietary supplementation with three selected mushroom species: Lion’s mane (Hericium erinaceus), Caterpillar mushroom (Cordyceps militaris), and Lingzhi/Reishi (Ganoderma lucidum). Preliminary small-sample clinical studies suggest that Lion’s mane can influence well-being of humans. In the case of Reishi, the results of clinical studies are equivocal, while in the case of Caterpillar Mushroom, such studies are underway. Edible mushrooms contain 5-hydroxy-L-tryptophan (5-HTP), which is a direct precursor of serotonin—a neurotransmitter targeted in pharmacotherapy of MDD. Therefore, in light of the well-recognized role of stress as a pathogenic factor of MDD, we also describe the neurobiological mechanisms of the interaction between stress and serotonergic neurotransmission; and summarize the current state of knowledge on dietary supplementation with 5-HTP in MDD.
Collapse
|
18
|
Meade E, Hehir S, Rowan N, Garvey M. Mycotherapy: Potential of Fungal Bioactives for the Treatment of Mental Health Disorders and Morbidities of Chronic Pain. J Fungi (Basel) 2022; 8:jof8030290. [PMID: 35330292 PMCID: PMC8954642 DOI: 10.3390/jof8030290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Mushrooms have been used as traditional medicine for millennia, fungi are the main natural source of psychedelic compounds. There is now increasing interest in using fungal active compounds such as psychedelics for alleviating symptoms of mental health disorders including major depressive disorder, anxiety, and addiction. The anxiolytic, antidepressant and anti-addictive effect of these compounds has raised awareness stimulating neuropharmacological investigations. Micro-dosing or acute dosing with psychedelics including Lysergic acid diethylamide (LSD) and psilocybin may offer patients treatment options which are unmet by current therapeutic options. Studies suggest that either dosing regimen produces a rapid and long-lasting effect on the patient post administration with a good safety profile. Psychedelics can also modulate immune systems including pro-inflammatory cytokines suggesting a potential in the treatment of auto-immune and other chronic pain conditions. This literature review aims to explore recent evidence relating to the application of fungal bioactives in treating chronic mental health and chronic pain morbidities.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland; (E.M.); (S.H.)
| | - Sarah Hehir
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland; (E.M.); (S.H.)
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, F91 YW50 Sligo, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Technical University Shannon Midlands Midwest, N37 HD68 Athlone, Ireland;
| | - Mary Garvey
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland; (E.M.); (S.H.)
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, F91 YW50 Sligo, Ireland
- Correspondence: ; Tel.: +353-071-9305529
| |
Collapse
|
19
|
Discovering the Potential of Natural Antioxidants in Age-Related Macular Degeneration: A Review. Pharmaceuticals (Basel) 2022; 15:ph15010101. [PMID: 35056157 PMCID: PMC8777838 DOI: 10.3390/ph15010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease associated with anatomical changes in the inner retina. Despite tremendous advances in clinical care, there is currently no cure for AMD. This review aims to evaluate the published literature on the therapeutic roles of natural antioxidants in AMD. A literature search of PubMed, Web of Science and Google Scholar for peer-reviewed articles published between 1 January 2011 and 31 October 2021 was undertaken. A total of 82 preclinical and 18 clinical studies were eligible for inclusion in this review. We identified active compounds, carotenoids, extracts and polysaccharides, flavonoids, formulations, vitamins and whole foods with potential therapeutic roles in AMD. We evaluated the integral cellular signaling pathways including the activation of antioxidant pathways and angiogenesis pathways orchestrating their mode of action. In conclusion, we examined the therapeutic roles of natural antioxidants in AMD which warrant further study for application in clinical practice. Our current understanding is that natural antioxidants have the potential to improve or halt the progression of AMD, and tailoring therapeutics to the specific disease stages may be the key to preventing irreversible vision loss.
Collapse
|
20
|
Chong PS, Poon CH, Roy J, Tsui KC, Lew SY, Phang MWL, Tan RJY, Cheng PG, Fung ML, Wong KH, Lim LW. Neurogenesis-dependent antidepressant-like activity of Hericium erinaceus in an animal model of depression. Chin Med 2021; 16:132. [PMID: 34876186 PMCID: PMC8650354 DOI: 10.1186/s13020-021-00546-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background Depression is a severe neuropsychiatric disorder that affects more than 264 million people worldwide. The efficacy of conventional antidepressants are barely adequate and many have side effects. Hericium erinaceus (HE) is a medicinal mushroom that has been reported to have therapeutic potential for treating depression. Methods Animals subjected to chronic restraint stress were given 4 weeks HE treatment. Animals were then screened for anxiety and depressive-like behaviours. Gene and protein assays, as well as histological analysis were performed to probe the role of neurogenesis in mediating the therapeutic effect of HE. Temozolomide was administered to validate the neurogenesis-dependent mechanism of HE. Results The results showed that 4 weeks of HE treatment ameliorated depressive-like behaviours in mice subjected to 14 days of restraint stress. Further molecular assays demonstrated the 4-week HE treatment elevated the expression of several neurogenesis-related genes and proteins, including doublecortin, nestin, synaptophysin, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), phosphorylated extracellular signal-regulated kinase, and phosphorylated cAMP response element-binding protein (pCREB). Increased bromodeoxyuridine-positive cells were also observed in the dentate gyrus of the hippocampus, indicating enhanced neurogenesis. Neurogenesis blocker temozolomide completely abolished the antidepressant-like effects of HE, confirming a neurogenesis-dependent mechanism. Moreover, HE induced anti-neuroinflammatory effects through reducing astrocyte activation in the hippocampus, which was also abolished with temozolomide administration. Conclusion HE exerts antidepressant effects by promoting neurogenesis and reducing neuroinflammation through enhancing the BDNF-TrkB-CREB signalling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00546-8.
Collapse
Affiliation(s)
- Pit Shan Chong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Chi Him Poon
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Ka Chun Tsui
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Michael Weng Lok Phang
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rachael Julia Yuenyinn Tan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Poh Guat Cheng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Ganofarm R&D SDN BHD, 01-01, SKYPOD SQUARE, Persiaran Puchong Jaya Selatan, Bandar Puchong Jaya, 47100, Puchong, Selangor, Malaysia
| | - Man-Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Kah Hui Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China. .,Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China.
| |
Collapse
|
21
|
Subermaniam K, Teoh SL, Yow YY, Tang YQ, Lim LW, Wong KH. Marine algae as emerging therapeutic alternatives for depression: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:997-1013. [PMID: 34804417 PMCID: PMC8591755 DOI: 10.22038/ijbms.2021.54800.12291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
Depression is a complex heterogeneous brain disorder characterized by a range of symptoms, resulting in psychomotor and cognitive disabilities and suicidal thoughts. Its prevalence has reached an alarming level affecting millions of people globally. Despite advances in current pharmacological treatments, the heterogenicity of clinical response and incidences of adverse effects have shifted research focus to identification of new natural substances with minimal or no adverse effects as therapeutic alternatives. Marine algae-derived extracts and their constituents are considered potential sources of secondary metabolites with diverse beneficial effects. Marine algae with enormous health benefits are emerging as a natural source for discovering new alternative antidepressants. Its medicinal properties exhibited shielding efficacy against neuroinflammation, oxidative stress, and mitochondrial dysfunction, which are indicated to underlie the pathogenesis of many neurological disorders. Marine algae have been found to ameliorate depressive-like symptoms and behaviors in preclinical and clinical studies by restoring monoaminergic neurotransmission, hypothalamic-pituitary-adrenal axis function, neuroplasticity, and continuous neurogenesis in the dentate gyrus of the hippocampus via modulating brain-derived neurotrophic factors and antineuroinflammatory activity. Although antidepressant effects of marine algae have not been validated in comparison with currently available synthetic antidepressants, they have been reported to have effects on the pathophysiology of depression, thus suggesting their potential as novel antidepressants. In this review, we analyzed the currently available research on the potential benefits of marine algae on depression, including their effects on the pathophysiology of depression, potential clinical relevance of their antidepressant effects in preclinical and clinical studies, and the underlying mechanisms of these effects.
Collapse
Affiliation(s)
- Kogilavani Subermaniam
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia,Training Management Division, Ministry of Health Malaysia, 62675 Putrajaya, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yin Quan Tang
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia,Corresponding author: K.H. Wong, Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia. Tel: +60379674729; Fax: +60379674724;
| |
Collapse
|
22
|
Water Extract of Mixed Mushroom Mycelia Grown on a Solid Barley Medium Is Protective against Experimental Focal Cerebral Ischemia. Curr Issues Mol Biol 2021; 43:365-383. [PMID: 34203617 PMCID: PMC8928960 DOI: 10.3390/cimb43010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Although the individual consumption of medicinal mushrooms, including Phellinus linteus (PL), Ganoderma lucidum (GL), and Inonotus obliquus (IO), is known to be neuroprotective, the associated mechanisms underlying their therapeutic synergism on focal cerebral ischemia (fCI) have yet to be elucidated. This study aimed to demonstrate the neuroprotective effects of mixed mushroom mycelia (MMM) against experimental fCI. The water-fractions, ethanolic-fractions, and ethyl acetate-fractions of the MMM (PL, GL, and IO) grown in a barley medium using solid-state fermentation techniques were prepared and their protective effects against glutamate-induced excitotoxicity were compared in PC-12 cells. After the identification of the water extracts of MMM (wMMM) as the most suitable form, which possessed the lowest toxicity and highest efficacy, further analyses for evaluating the anti-apoptotic effects of wMMM, including Hoechst 33258-based nuclear staining, fluorescence-activated cell sorting, and reactive oxygen species (ROS) detection assays, were performed. Rats were subjected to a 90 min middle cerebral artery occlusion and reperfusion, after which a wMMM treatment resulted in significant dose-dependent improvements across a number of parameters. Furthermore, measurements of intracellular ROS and levels of antioxidant enzymes revealed a wMMM-mediated ROS attenuation and antioxidant enzyme upregulation. We suggest that wMMM is neuroprotective against fCI through its anti-apoptotic and anti-oxidative effects.
Collapse
|
23
|
Rapid Identification of Chemical Constituents in Hericium erinaceus Based on LC-MS/MS Metabolomics. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5560626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hericium erinaceus is a precious edible and medicinal fungus with high nutritional value. It has many functions, such as enhancing immunity, antitumor antioxidation, antihyperglycemic, antihyperlipidemic, and protecting gastric mucosa. However, there are few researches about the H. erinaceus compounds. In this paper, ultraperformance liquid chromatography tandem high-resolution mass spectrometry (UPLC-Q-exactive-MS/MS) was used to isolate and identify the compounds in H. erinaceus. 102 compounds were identified in H. erinaceus by comparing with standard databases such as MZVault, MZCloud, and BGI Library (self-built standard Library by BGI Co., Ltd), including flavonoids, terpenoids, phenolic acids, phenylpropanoids, steroids, organic acids, and amino acids.
Collapse
|
24
|
Zhang M, Zhang Y, Sun H, Ni H, Sun J, Yang X, Chen W, Zhao W, Zhong X, He C, Ao H, He S. Sinisan Protects Primary Hippocampal Neurons Against Corticosterone by Inhibiting Autophagy via the PI3K/Akt/mTOR Pathway. Front Psychiatry 2021; 12:627056. [PMID: 34122166 PMCID: PMC8192823 DOI: 10.3389/fpsyt.2021.627056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Corticosterone causes significant neurotoxicity in primary hippocampal neurons which is associated with depression. Dysfunctional autophagy is implicated in cognitive impairment and depressive-like behavior. The traditional Chinese medicine Sinisan (SNS) is highly effective in clinical treatment of depression. However, the molecular mechanisms underlying therapeutic effects of SNS are unknown. Purpose: The aim of this study was to elucidate the protective effect of SNS and the underlying mechanisms against corticosterone-induced neuronal damage. Study Design: The effects of serum derived from rats containing SNS (or untreated controls) on the expression of autophagy-related molecules in primary rat hippocampal neurons exposed to different concentrations of corticosterone for different intervals were explored. Methods: CCK-8 assay, LDH assay were used to analyze cell viability and LDH activity. Western blot, qRT-PCR, and immunofluorescence assays were used to determine protein and mRNA expression levels of molecules such as LC3, p62, Beclin1, ULK1, PI3K, p-PI3K, Akt p-Akt, mTOR, p-mTOR, p70S6, p-p70S6, 4ebp1 and p-4ebp1. Results: Corticosterone induced a dose- and time-dependent reduction in cellular viability. Moreover, corticosterone (100-400 μM) treatment for 24 h increased LC3-II/LC3-I protein ratio, increased Beclin1 and ULK1 protein expression levels, and decreased p62, PI3K, p-PI3K, p-Akt, p-mTOR, p-p70S6, and p-4ebp1 protein expression levels. Notably, SNS-containing serum reversed corticosterone-induced reduction of neuronal viability, and increased p62, PI3K, p-Akt, p-mTOR, p-p70S6, and p-4ebp1 protein and mRNA expression levels. In addition, SNS-containing serum decreased LC3-II/LC3-I protein ratio, and downregulated Beclin1, and ULK1 protein and mRNA expression in primary hippocampal neurons. Conclusion: SNS protects primary hippocampal neurons against corticosterone-induced neurotoxicity by preventing excessive autophagy through activation of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Mingjia Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Department of Psychology, School of Economics and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haitao Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Ni
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Jialing Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuemei Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weicong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenting Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaodan Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyu He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiqing Ao
- Department of Psychology, School of Economics and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Songqi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|