1
|
Chang K, Guo R, Hu W, Wang X, Cao F, Qiu J, Li J, Han Q, Du Z, Dou X, Li S. Xie Zhuo Tiao Zhi formula ameliorates chronic alcohol-induced liver injury in mice. Front Pharmacol 2024; 15:1363131. [PMID: 38681193 PMCID: PMC11045942 DOI: 10.3389/fphar.2024.1363131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
This study aimed to evaluate the protective role and potential mechanisms of Xie Zhuo Tiao Zhi decoction (XZTZ) on alcohol-associated liver disease (ALD). XZTZ significantly alleviated alcohol-induced liver dysfunction, based on histological examinations and biochemical parameters after 4-week administration. Mechanically, alcohol-stimulated hepatic oxidative stress was ameliorated by XZTZ, accompanied by the improvement of Nrf2/Keap1 expression and alcohol-activated phosphorylation of pro-inflammatory transcription factors, including JNK, P38, P65, and IκBα, were rescued by XZTZ. In conclusion, XZTZ demonstrates potential in alleviating alcohol-induced liver injury, oxidative stress, and inflammation possibly through modulation of Nrf2/Keap1 and MAPKs/NF-κB signaling pathways, suggesting its potential as a therapeutic option for patients with alcoholic liver disease.
Collapse
Affiliation(s)
- Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenbo Hu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuezhu Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feiwei Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaomei Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyan Du
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Zhejiang Engineering Research Center for ‘Preventive Treatment’ Smart Health of Traditional Chinese Medicine, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Huang T, Wu Y, Huang L, Lin R, Li Z, Wang X, Wu P, Huang L. Mechanism of the Effect of Compound Anoectochilus roxburghii (Wall.) Lindl. Oral Liquid in Treating Alcoholic Rat Liver Injury by Metabolomics. Drug Des Devel Ther 2023; 17:3409-3428. [PMID: 38024538 PMCID: PMC10659148 DOI: 10.2147/dddt.s427837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Compound Anoectochilus roxburghii (Wall.) Lindl oral liquid (CAROL) is often as a hepatoprotective agent. The present study aimed to elucidate the protective mechanism of CAROL against alcoholic liver injury in rats by untargeted metabolomics combined with multivariate statistical analysis. Methods An alcoholic liver disease model was established in sprague-dawley (SD) rats by gavage of alcohol, and CAROL treatment was administered. The hepatoprotective effect of CAROL was evaluated by examining liver tissues changes and detecting biochemical index activities and cytokines in serum and liver homogenates. The metabolites in serum samples were examined using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) and multivariate statistical analysis to screen for differentially expressed metabolites and Kyoto Encyclopedia of Genes and Genomes (KEGG) to assess potential metabolic pathways. Results CAROL has the potential to downregulate inflammation levels and alleviate oxidative stress. The differential metabolites are mainly engaged in riboflavin metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis metabolism, phenylalanine metabolism, pyrimidine metabolism, and vitamin B6 metabolism to achieve hepatoprotective effects. Conclusion CAROL may exhibit beneficial hepatoprotective effects by reducing inflammation, mitigating oxidative stress, and modulating metabolites and their metabolic pathways.This study has important implications for advancing the clinical application of CAROL.
Collapse
Affiliation(s)
- Tingxuan Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Youjia Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Lingyi Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Renyi Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Zhenyue Li
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Xiaoxiao Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Pingping Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Liying Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
3
|
DING J, XING Y, CHEN Z, CHEN W, MA Z, XIE Y, ZHOU L. Qilan preparation inhibits proliferation and induces apoptosis by down-regulating microRNA-21 in human Tca8113 tongue squamous cell carcinoma cells. J TRADIT CHIN MED 2022; 42:693-700. [PMID: 36083475 PMCID: PMC9924750 DOI: 10.19852/j.cnki.jtcm.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE The aim of this study was to examine the antitumor effects of Qilan preparation on oral squamous cell carcinoma (OSCC) and to investigate its underlying mechanisms of action. METHODS Cell proliferation, cell cycle distribution and apoptosis were examined using cell counting kit-8 (CCK8) and flow cytometry (FCM). The expression of PTEN and PDCD4 were determined by western blot. Changes in miR-21 levels were quantified using TaqMan stem-loop real-time PCR. After miR-21 was transiently transfected into Tca8113 cells using Lipofectamine®3000, cell proliferation, apoptosis and miR-21 and PDCD4 expression levels were measured. RESULTS Qilan preparation inhibited Tca8113 cell growth in a dose- and time-dependent manner by inducing apoptosis and cell cycle arrest in S-phase, decreasing miR-21 levels and increasing PTEN and PDCD4 expression. MiR-21 overexpression reversed the Qilan preparation-induced suppression of cell proliferation and induction of apoptosis while also blocking the increase in PDCD4. CONCLUSIONS Our study revealed, for the first time, the ability of Qilan preparation to suppress TSCC cell growth and elucidated that Qilan preparation elicits its anti-cancer actions either the miR-21/PDCD4 or PTEN pathway.
Collapse
Affiliation(s)
- Jiamin DING
- 1 Department of Oral Mucosal Diseases, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Yifeng XING
- 2 School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350000, China
| | - Zuoliang CHEN
- 3 Department of Oral Mucosal Diseases, Xiamen Stomatological Hospital, School of Stomatology, Fujian Medical University, Xiamen 361003, China
| | - Wanlu CHEN
- 1 Department of Oral Mucosal Diseases, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Zhongxiong MA
- 1 Department of Oral Mucosal Diseases, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Yunde XIE
- 1 Department of Oral Mucosal Diseases, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Lin ZHOU
- 4 Department of Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350001, China
- ZHOU Lin, Department of Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350001, China. : +86-591-83754882
| |
Collapse
|
4
|
Liu K, Chen X, Ren Y, Liu C, Yuan A, Zheng L, Li B, Zhang Y. Identification of a novel farnesoid X receptor agonist, kaempferol-7-O-rhamnoside, a compound ameliorating drug-induced liver injury based on virtual screening and in vitro validation. Toxicol Appl Pharmacol 2022; 454:116251. [PMID: 36150480 DOI: 10.1016/j.taap.2022.116251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Farnesoid X receptor (FXR), a bile acid receptor, plays an essential role in maintaining bile acid and liver homeostasis and has been recognized as an essential target for drug-induced liver injury (DILI). This study aimed to identify potential FXR agonists by virtual screening, molecular dynamics (MD) simulation, and biological assays. First, an in-house Traditional Chinese medicine compound database was screened using a virtual approach based on molecular docking to reveal potential FXR agonists. Secondly, MD was applied to analyze the process of agonist binding. Finally, the acetaminophen (APAP)-induced L02 cells model evaluated the pharmacodynamic activity of agonists treating DILI. Virtual screening results showed that kaempferol-7-O-rhamnoside was confirmed as the FXR agonist. MD results showed that kaempferol-7-O-rhamnoside could stably bind the FXR. In addition, in vitro cell-based assay showed that kaempferol-7-O-rhamnoside could promote the expression of the FXR gene and inhibit the Cyp7a1 gene expression in APAP-induced cells, significantly reducing the activities of AST, AKP and ROS, and enhancing the expression of GSH. The current study confirmed that kaempferol-7-O-rhamnoside might improve liver function by promoting proliferation, ameliorating oxidative stress, and regulating FXR target genes as observed in vitro. Therefore, in this study, discovering the FXR agonist, kaempferol-7-O-rhamnoside, provides valuable guidance for developing novel drugs against DILI.
Collapse
Affiliation(s)
- Kaiyang Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xi Chen
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yue Ren
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chaoqun Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Anlei Yuan
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lulu Zheng
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Beiyan Li
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
5
|
Wang X, Yu H, Xing R, Li P. Hepatoprotective Effect of Oyster Peptide on Alcohol-Induced Liver Disease in Mice. Int J Mol Sci 2022; 23:ijms23158081. [PMID: 35897657 PMCID: PMC9332721 DOI: 10.3390/ijms23158081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Alcohol-induced liver disease (ALD) has become one of the major global health problems, and the aim of this study was to investigate the characterization of the structure as well as the hepatoprotective effect and mechanism of oyster peptide (OP, MW < 3500 Da) on ALD in a mouse model. The results demonstrate that ethanol administration could increase the activities of aspartate aminotransferase (AST), alanine transaminase (ALT), γ-Glutamyl transferase (GGT), reactive oxygen species (ROS), malondialdehyde (MDA), and triglycerides (TG), as well as increase the interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α) levels (p < 0.01), and reduce the activity of superoxide dismutase (SOD) and the concentration of glutathione (GSH). Those changes were significantly reversed by the application of different doses of OP. Furthermore, the mRNA expressions of nuclear factor elythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and quinone oxidoreductase1 (NQO1) were significantly up-regulated in OP groups, and the mRNA expressions of nuclear factor kappa-light chain enhancer of B cells (NF-κB), TNF-α, and IL-6 were markedly reduced in OP groups compared to that of the model group. Thus, OP had a significant protective effect on ALD through the enhancement of the in vivo antioxidant ability and the inhibition of the inflammatory response as possible mechanisms of action, which therefore suggests that OP might be useful as a natural source to protect the liver from alcohol damage.
Collapse
Affiliation(s)
- Xueqin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.W.); (H.Y.); (R.X.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.W.); (H.Y.); (R.X.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.W.); (H.Y.); (R.X.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.W.); (H.Y.); (R.X.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: ; Tel./Fax: +86-532-8289-8707
| |
Collapse
|
6
|
Kim CG, Chang SN, Park SM, Hwang BS, Kang SA, Kim KS, Park JG. Moringa oleifera mitigates ethanol-induced oxidative stress, fatty degeneration and hepatic steatosis by promoting Nrf2 in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154037. [PMID: 35358929 DOI: 10.1016/j.phymed.2022.154037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Moringa oleifera (M. oleifera) is cultivated throughout the world and it is known by numerous regional names and is consumed as medication for various diseases such as hypertension, diabetes, HIV and is potential source of nutrients and natural antioxidants making it among the most useful trees. METHODS We evaluated the therapeutic potential of M. oleifera on ethanol-induced fatty liver. The mice were treated with 30% ethanol (EtOH) alone or in combination with different concentration of M. oleifera extracts (100, 200 and 400 mg/kg). We performed biochemical estimation for the serum of important liver damage markers such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) and triglyceride (TG). We performed histopathological analysis from the liver tissues of different mice groups. We also performed ELISA assay, western blotting analysis and SPECT imaging to obtain our results. RESULTS The results for serum (AST, p < 0.0001), (ALT, p < 0.0006) and triglyceride (TG, p < 0.0003) were found to be significantly reduced in all doses of M. oleifera extract treatment groups in comparison with the ethanol group. H&E staining analysis and scoring revealed a significant reduction in lipid droplet accumulation and a significant reduction of liver steatosis (p < 0.0001), lobular inflammation (p < 0.0013), ballooning (p < 0.0004) and immunohistochemistry for TNF-α. M. oleifera also ameliorated ethanol-induced oxidative stress evaluated through MDA (p < 0.0001), H2DCFDA, JC-1 staining and a significant down-regulation of CYP2E1 enzyme (p < 0.0001) in the 200 and 400 mg/kg groups in comparison with EtOH groups. M. oleifera extract also boosted the antioxidant response evaluated through total GSH assay (p < 0.0001) and nuclear translocation of Nrf2. Furthermore, we performed SPECT imaging and evaluated the liver uptake value (LUV) to assess the extent of liver damage. LUV was observed to be lower in the ethanol group, whereas LUV was higher in control and M. olifera treated groups. CONCLUSION In summary, from this experiment we conclude that M. oleifera extract has the potential to ameliorate ethanol-induced liver damage.
Collapse
Affiliation(s)
- Chang Geon Kim
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea; School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712749, Republic of Korea
| | - Sukkum Ngullie Chang
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - Seon Min Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea; Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Sung-A Kang
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea
| | - Kil Soo Kim
- Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea.
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea.
| |
Collapse
|
7
|
Xie SZ, Zhai XY, Xi SY, Qiu YK, Zhang YM, Kong XJ, Li YH, Zhu L, Wang Z, Zhang SG, Huang SQ, Lu DW, Wang Z. The Protective Effects of Zornia diphylla (L.) Pers. Against Acute Liver Injury Induced by Carbon Tetrachloride in Mice. Front Pharmacol 2021; 12:764282. [PMID: 34899319 PMCID: PMC8651617 DOI: 10.3389/fphar.2021.764282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 12/31/2022] Open
Abstract
Background:Zornia diphylla (L.) Pers. (ZDP) is a traditional Chinese herbal medicine that has been used for several decades to treat patients with liver diseases. Whether ZDP is best administered as a single agent or adjunctive therapy has yet to be determined as does the mechanism whereby it exerts its effects on antagonizing acute liver injury (ALI). Aim of the study: To investigate the protective effects of ZDP on ALI induced by carbon tetrachloride (CCl4) and the potential underlying mechanisms. Materials and Methods: Sixty adult mice were randomized into six study groups (n = 10/group). Three groups were treated with different concentrations of ZDP (2.5, 1.25, 0.625 g/kg), one with bifendate (0.0075 g/kg) alone (positive control) and one with physiologic saline (normal, negative control). All groups were treated for 14 days. Two hours after the last administration, the normal group received an intraperitoneal injection of peanut oil, and the other five groups received an intraperitoneal injection of an equal dose of CCl4 peanut oil solution. At 24 h, the liver index, histology and serum or tissue levels and/or protein expression of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TBIL), alkaline phosphatase (ALP), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), glutathione (GSH), Akt, phosphorylated Akt (p-Akt), nuclear factor kappa B p65 (NF-κB p65), inhibitor of NF-κB α (IκB-α), interleukin-1 β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), E-cadherin and vimentin were determined. Results: Compared to the model controls, the degree of inflammatory cell infiltration and hepatocyte injury of liver tissue was relieved in the bifendate and three ZDP groups; liver index in the ZDP (2.5, 1.25 g/kg) groups and serum liver function indices in the ZDP (2.5, 1.25 and 0.625 g/kg) groups were decreased; antioxidants SOD, CAT and GSH in liver tissue were increased but the lipid peroxidation index MDA was decreased; protein expression of inflammatory cytokines Akt, p-Akt, NF-κB p65, IκB-α, IL-1β, IL-6 and TNF-α in the liver was ameliorated, and E-cadherin expression was increased. The results of liver histopathology also showed that ZDP had a significant effect on ALI. Conclusion: ZDP has obvious protective effects on CCl4-induced ALI as a single therapy and appears to act by inhibiting oxidation, reducing the release of inflammatory factors and promoting hepatocyte repair.
Collapse
Affiliation(s)
- Su-Zhi Xie
- Department of Pharmacy, Xiamen Haicang Hospital, Xiamen, China
| | - Xiang-Yang Zhai
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Sheng-Yan Xi
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Ying-Kun Qiu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yu-Mei Zhang
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Xiang-Jun Kong
- Department of Pharmacy, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yun-Hong Li
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Zhu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Zheng Wang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Shan-Gang Zhang
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Shu-Qiong Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Da-Wei Lu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Zheng Wang
- Department of Pharmacy, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| |
Collapse
|