1
|
Kumari S, Singh M, Nupur, Jain S, Verma N, Malik S, Rustagi S, Priya K. A review on therapeutic mechanism of medicinal plants against osteoporosis: effects of phytoconstituents. Mol Biol Rep 2023; 50:9453-9468. [PMID: 37676432 DOI: 10.1007/s11033-023-08751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Osteoporosis is a metabolic bone disorder that over time results in bone loss and raises the risk of fracture. The condition is frequently silent and only becomes apparent when fractures develop. Osteoporosis is treated with pharmacotherapy as well as non-pharmacological therapies such as mineral supplements, lifestyle changes, and exercise routines. Herbal medicine is frequently used in clinical procedures because of its low risk of adverse effects and cost-effective therapeutic results. In the current review, we have used a thorough strategy to identify some known medicinal plants with anti-osteoporosis capabilities, their origin, active ingredients, and pharmacological information. Furthermore, several signaling pathways, such as the apoptotic pathway, transcription factors, the Wnt/-catenin signaling pathway, and others, are regulated by bioactive components and help to improve bone homeostasis. This review will provide a better understanding of the anti-osteoporotic effects of bioactive components and the concomitant modulations of signaling pathways.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Mohini Singh
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Nupur
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Smita Jain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Neha Verma
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Ranchi, 834002, Jharkhand, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Kanu Priya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India.
| |
Collapse
|
2
|
Farhat EK, Sher EK, Džidić-Krivić A, Banjari I, Sher F. Functional biotransformation of phytoestrogens by gut microbiota with impact on cancer treatment. J Nutr Biochem 2023; 118:109368. [PMID: 37100304 DOI: 10.1016/j.jnutbio.2023.109368] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
The human gut is a host for trillions of microorganisms, divided into more than 3000 heterogeneous species, which is called the gut microbiota. The gut microbiota composition can be altered by many different endogenous and exogenous factors, especially diet and nutrition. A diet rich in phytoestrogens, a variable group of chemical compounds similar to 17-β-estradiol (E2), the essential female steroid sex hormone is potent to change the composition of gut microbiota. However, the metabolism of phytoestrogens also highly depends on the action of enzymes produced by gut microbiota. Novel studies have shown that phytoestrogens could play an important role in the treatment of different types of cancers, such as breast cancer in women, due to their potential to decrease estrogen levels. This review aims to summarize recent findings about the lively dialogue between phytoestrogens and the gut microbiota and to address their possible future application, especially in treating patients with diagnosed breast cancer. A potential therapeutic approach for the prevention and improving outcomes in breast cancer patients could be based on targeted probiotic supplementation with the use of soy phytoestrogens. A positive effect of probiotics on the outcome and survival of patients with breast cancer has been established. However, more in vivo scientific studies are needed to pave the way for the use of probiotics and phytoestrogens in the clinical practice of breast cancer treatment.
Collapse
Affiliation(s)
- Esma Karahmet Farhat
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Oncology, Cantonal Hospital Zenica, Zenica, 72000, Bosnia and Herzegovina
| | - Ines Banjari
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
3
|
Guo Z, Liu Y, Xiang J, Liang X. Mechanochemical preparation of red clover extract/β-cyclodextrin dispersion: Enhanced water solubility and activities in alleviating high-fat diet-induced lipid accumulation and gut microbiota dysbiosis in mice. Food Chem 2023; 420:136084. [PMID: 37060670 DOI: 10.1016/j.foodchem.2023.136084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Red clover (RC) extract is rich in isoflavones (formononetin and biochanin A) that have various biological functions. However, its low water solubility limits its bioavailability. In this study, an RC extract/β-cyclodextrin (RC/β-CD) dispersion was prepared by ball milling to enhance its water solubility and biological availability. The water solubility of formononetin and biochanin A was 34.45 and 13.65 μg/mL (increased to 3.11 and 2.14 times higher than that of RC alone), respectively. The alleviating effects of the dispersion on lipid accumulation and gut microbiota were evaluated in mice. The RC/β-CD dispersion showed a better effect on inhibiting lipid accumulation, especially on total triglycerides. The dispersion group had a higher relative abundance of Akkermansia, Muribaculaceae, and Bacteroides than RC alone, along with a higher level of acetic and butyric acid. The study provides a feasible way for improving the bioaccessibility and bioactivity of RC isoflavones in red clover.
Collapse
Affiliation(s)
- Zili Guo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yilin Liu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiani Xiang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xianrui Liang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Quah Y, Yi-Le JC, Park NH, Lee YY, Lee EB, Jang SH, Kim MJ, Rhee MH, Lee SJ, Park SC. Serum biomarker-based osteoporosis risk prediction and the systemic effects of Trifolium pratense ethanolic extract in a postmenopausal model. Chin Med 2022; 17:70. [PMID: 35701790 PMCID: PMC9199188 DOI: 10.1186/s13020-022-00622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Recent years, a soaring number of marketed Trifolium pratense (red clover) extract products have denoted that a rising number of consumers are turning to natural alternatives to manage postmenopausal symptoms. T. pratense ethanolic extract (TPEE) showed immense potential for their uses in the treatment of menopause complications including osteoporosis and hormone dependent diseases. Early diagnosis of osteoporosis can increase the chance of efficient treatment and reduce fracture risks. Currently, the most common diagnosis of osteoporosis is performed by using dual-energy x-ray absorptiometry (DXA). However, the major limitation of DXA is that it is inaccessible and expensive in rural areas to be used for primary care inspection. Hence, serum biomarkers can serve as a meaningful and accessible data for osteoporosis diagnosis. Methods The present study systematically elucidated the anti-osteoporosis and estrogenic activities of TPEE in ovariectomized (OVX) rats by evaluating the bone microstructure, uterus index, serum and bone biomarkers, and osteoblastic and osteoclastic gene expression. Leverage on a pool of serum biomarkers obtained from this study, recursive feature elimination with a cross-validation method (RFECV) was used to select useful biomarkers for osteoporosis prediction. Then, using the key features extracted, we employed five classification algorithms: extreme gradient boosting (XGBoost), random forest, support vector machine, artificial neural network, and decision tree to predict the bone quality in terms of T-score. Results TPEE treatments down-regulated nuclear factor kappa-B ligand, alkaline phosphatase, and up-regulated estrogen receptor β gene expression. Additionally, reduced serum C-terminal telopeptides of type 1 collagen level and improvement in the estrogen dependent characteristics of the uterus on the lining of the lumen were observed in the TPEE intervention group. Among the tested classifiers, XGBoost stood out as the best performing classification model with the highest F1-score and lowest standard deviation. Conclusions The present study demonstrates that TPEE treatment showed therapeutic benefits in the prevention of osteoporosis at the transcriptional level and maintained the estrogen dependent characteristics of the uterus. Our study revealed that, in the case of limited number of features, RFECV paired with XGBoost model could serve as a powerful tool to readily evaluate and diagnose postmenopausal osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00622-7.
Collapse
Affiliation(s)
- Yixian Quah
- College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea.,Reproductive and Development Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Jireh Chan Yi-Le
- Centre of IoT and Big Data, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia
| | - Na-Hye Park
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Yuan Yee Lee
- College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Eon-Bee Lee
- College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Seung-Hee Jang
- Teazen Co. Ltd., Gyegok-myeon, Haenam-gun, Jeollanam-do, 59017, Republic of Korea
| | - Min-Jeong Kim
- Teazen Co. Ltd., Gyegok-myeon, Haenam-gun, Jeollanam-do, 59017, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Seung-Jin Lee
- Reproductive and Development Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Seung-Chun Park
- College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea.
| |
Collapse
|