1
|
Liu X, Liu H, Wu X, Zhao Z, Wang S, Wang H, Qin X. Xiaoyaosan against depression through suppressing LPS mediated TLR4/NLRP3 signaling pathway in "microbiota-gut-brain" axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118683. [PMID: 39121928 DOI: 10.1016/j.jep.2024.118683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression impairs not only central nervous system, but also peripheral systems of the host. Gut microbiota have been proved to be involved in the pathogenesis of depression. Xiaoyaosan (XYS) has a history of over a thousand years in China for treating depression, dramatically alleviating anxiety, cognitive disorders, and especially gastrointestinal dysfunctions. Yet, it still just scratches the surface of the anti-depression mechanisms of XYS. AIM OF THE STUDY This study aims to elucidate the mechanism of actions of XYS from the perspective of "microbiota-gut-brain" axis. MATERIALS AND METHODS We firstly evaluated the effects of XYS on the macroscopic behaviors of depressed rats that induced by chronic unpredictable mild stress (CUMS). Secondly, the effects of XYS on intestinal homeostasis of depressed rats were revealed by using dysbacteriosis model. Subsequently, the underlying mechanisms were demonstrated by 16S rRNA gene sequencing technology and molecular biology methods. Finally, correlation analysis and visualization of the anti-depression effects of XYS were performed from the "microbiota - gut - brain" perspective. RESULTS Our data indicated that XYS ameliorated the depression-like symptoms of CUMS rats, partly depending on the presence of gut microbiota. Furthermore, we illustrated that XYS reversed CUMS-induced gut dysbiosis of depressed rats in terms of decreasing the Bacteroidetes/Firmicutes ratio and the abundances of Bacteroides, and Corynebacterium, while increasing the abundances of Lactobacillus and Adlercreutzia. The significant enrichment of Bacteroides and the level of lipopolysaccharides (LPS) suggested that depression damaged the immune responses and gut barrier. Mechanistically, XYS significantly down-regulated the expression levels of factors that involved in TLR4/NLRP3 signaling pathway in the colon and brain tissues of depressed rats. In addition, XYS significantly increased the levels of claudin 1 and ZO-1, showing that XYS positively maintained the integrity of gut and blood-brain barriers (BBB). CONCLUSION Our study offers insights into the anti-depression effects of XYS through a lens of "microbiota-TLR4/NLRP3 signaling pathway-barriers", providing a foundation for enhancing clinical efficiency and enriching drug selection, and contributing to our understanding of the mechanisms of traditional Chinese medicines (TCMs) in treating depression.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China.
| | - Huimin Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Xiaoling Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Senyan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Huimin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| |
Collapse
|
2
|
Yao T, Wang Q, Han S, Xu Y, Chen M, Wang Y. Exploring the therapeutic mechanism of Yuebi decoction on nephrotic syndrome based on network pharmacology and experimental study. Aging (Albany NY) 2024; 16:12623-12650. [PMID: 39311772 PMCID: PMC11466484 DOI: 10.18632/aging.206116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE This study aimed to explore the material basis of YBD and its possible mechanisms against NS through network pharmacology, molecular docking, and in vivo experiment. METHODS Active ingredients and potential targets of YBD were obtained through TCMSP and SwissTargetPrediction. NS-related targets were obtained from GeneCards, PharmGKB, and OMIM databases. The herb-ingredient-target network and PPI network were constructed by Cytoscape 3.9.1 and STRING database. GO and KEGG analyses were performed by DAVID database and ClueGO plugin. The connection between main active ingredients and core targets were revealed by molecular docking. To ascertain the effects and molecular mechanisms of YBD, a rat model was established by PAN. RESULTS We collected 124 active ingredients, 269 drug targets, and 2089 disease targets. 119 overlapping were screened for subsequent analysis. PPI showed that AKT1, STAT3, TRPC6, CASP3, JUN, PPP3CA, IL6, PTGS2, VEGFA, and NFATC3 were potential therapeutic targets of YBD against NS. Through GO and KEGG analyses, it showed the therapeutic effect of YBD on NS was closely involved in the regulation of pathways related to podocyte injury, including AGE-RAGE signaling pathway in diabetic complications and MAPK signaling pathway. Five key bioactive ingredients of YBD had the good affinity with the core targets. the experiment confirmed the renoprotective effects of YBD through reducing podocyte injury. Furthermore, YBD could downregulate expressions of PPP3CA, STAT3, NFATC3, TRPC6, and AKT1 in rats. CONCLUSIONS YBD might be a potential drug in the treatment of NS, and the underlying mechanism is closely associated with the inhibition of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qingliang Wang
- Shanghai Jing'an District Hospital of Traditional Chinese Medicine, Shanghai 200072, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
3
|
Fu X, Wang H, Gai M, Dai Y, Chang J, Zhang H. Integrating network pharmacology with experimental validation to investigate the mechanism of Wuwei Zishen formula in improving perimenopausal syndrome. Am J Transl Res 2024; 16:2190-2211. [PMID: 39006282 PMCID: PMC11236650 DOI: 10.62347/rqhy5963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVES To investigate the role of the Wuwei Zishen formula (WWZSF) in treating and preventing perimenopausal syndrome (PMS) and to understand its mechanism. METHODS Network pharmacology and molecular docking was used to predict active compounds, potential targets, and pathways for PMS treatment using WWZSF. Female Sprague-Dawley (SD) rats were induced with D-galactose (D-gal) to establish a PMS model and treated with Kunbao pill (KBP) and WWZSF. Estrus cycles were observed using vaginal smears. Serum sex hormones were measured using the enzyme-linked immunosorbent assay (ELISA). Histological changes in the uterus and ovaries were evaluated using hematoxylin-eosin staining (HE). Western blot was used to assess the protein expression levels of Cleaved Caspase-3, p62, BAX/Bcl-2, p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR in the uterus and ovaries. RESULTS A total of 70 active compounds and 440 potential targets were screened out. Important targets and pathways, including AKT1, Bcl-2, Caspase-3, mTOR, and the PI3K/AKT/mTOR pathways, and molecular docking verified their high affinities to key WWZSF components. In vivo experiments showed that WWZSF can ameliorate the morphological abnormalities of the uterus and ovaries, increase sex hormone levels and organ index, and restore the estrus cycles in PMS rats. Moreover, the western blot results showed decreased Cleaved Caspase-3 and BAX/Bcl-2 protein levels in the ovarian and uterine tissues after WWZSF therapy. Concurrently, there was an increase in the expression of p62 and the ratios of p-AKT/AKT, p-mTOR/mTOR, and p-PI3K/PI3K. CONCLUSION The PI3K/AKT/mTOR signaling pathway-mediated apoptosis and autophagy pathways may be how WWZSF efficiently reduces PMS.
Collapse
Affiliation(s)
- Xuewen Fu
- Changchun University of Chinese MedicineChangchun 130117, Jilin, China
| | - Hui Wang
- The Affiliated Hospital to Changchun University of Chinese MedicineChangchun 130021, Jilin, China
| | - Meichen Gai
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| | - Yuanhua Dai
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| | - Jun Chang
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| | - Hong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| |
Collapse
|
4
|
Zhang D, Zhou Q, Zhang Z, Yang X, Man J, Wang D, Li X. Based on Network Pharmacology and Molecular Docking, the Active Components, Targets, and Mechanisms of Flemingia philippinensis in Improving Inflammation Were Excavated. Nutrients 2024; 16:1850. [PMID: 38931205 PMCID: PMC11206888 DOI: 10.3390/nu16121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Flemingia philippinensis, a polyphenol-rich plant, holds potential for improving inflammation, but its mechanisms are not well understood. Therefore, this study employed network pharmacology and molecular docking to explore the mechanism by which Flemingia philippinensis ameliorates inflammation. In this study, 29 kinds of active ingredients were obtained via data mining. Five main active components were screened out for improving inflammation, which were flemichin D, naringenin, chrysophanol, genistein and orobol. In total, 52 core targets were identified, including AKT serine/threonine kinase 1 (AKT1), tumor necrosis factor (TNF), B-cell lymphoma-2 (BCL2), serum albumin (ALB), and estrogen receptor 1 (ESR1). Gene ontology (GO) enrichment analysis identified 2331 entries related to biological processes, 98 entries associated with cellular components, and 203 entries linked to molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis yielded 149 pathways, including those involved in EGFR tyrosine kinase inhibitor resistance, endocrine resistance, and the PI3K-Akt signaling pathway. Molecular docking results showed strong binding effects between the main active components and the core targets, with binding energies less than -5 kcal/mol. In summary, this study preliminarily elucidated the underlying mechanisms by which Flemingia philippinensis, through a multi-component, multi-target, and multi-pathway approach, ameliorates inflammation. This provides a theoretical foundation for the subsequent application of Flemingia philippinensis in inflammation amelioration.
Collapse
Affiliation(s)
- Dongying Zhang
- College of Science, Yunnan Agricultural University, Kunming 650201, China;
| | - Qixing Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Zhen Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Xiangxuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Jiaxu Man
- Institute of Agricultural Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650201, China;
| | - Dongxue Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Xiaoyong Li
- College of Food and Biological Engineering, Hezhou University, Hezhou 542899, China
| |
Collapse
|
5
|
Bao Y, Zhou H, Fu Y, Wang C, Huang Q. Zhumian Granules improves PCPA-induced insomnia by regulating the expression level of neurotransmitters and reducing neuronal apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118048. [PMID: 38484955 DOI: 10.1016/j.jep.2024.118048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sleep problems, according to Traditional Chinese medicine (TCM) philosophy, are attributed to the imbalance between yin and yang. Zhumian Granules, also known as Sleep-aid Granules or ZG, are a traditional Chinese herbal remedy specifically designed to alleviate insomnia. This formula consists of many components, including Wu Wei Zi (Schisandrae Chinensis Fructus), Suan Zao Ren (Ziziphi Spinosae Semen), and other medicinal plants. According to the pharmacology of Traditional Chinese Medicine (TCM), Wu Wei Zi and Suan Zao Ren have the ability to relax the mind and promote sleep. When taken together, they may balance the opposing forces of yin and yang. Therefore, ZG may potentially be used as a therapeutic treatment for insomnia. AIM OF THE STUDY This research was specifically developed to establish a strong empirical basis for the subsequent advancement and utilization of ZG in the management of insomnia. This research aimed to gather empirical data to support the effectiveness of ZG, thereby providing useful insights into its potential therapeutic advantages for persons with insomnia. MATERIALS AND METHODS This study utilized Zhumian Granules (ZG), a traditional Chinese herbal decoction, to examine its sedative and hypnotic effects on mice with PCPA-induced insomnia. The effects were assessed using the pentobarbital-induced sleep test (PIST), Morris water maze test (MWM), and autonomic activity test. The levels of neurotransmitters in each group of mice were evaluated using UPLC-QQQ-MS. The impact of ZG on the quantity and structure of hippocampal neurons was seen in brain tissue slices using immunofluorescence labeling. RESULTS ZG was shown to possess active sedative properties, effectively lowering the distance of movement and lengthening the duration of sleep. ZG mitigated the sleeplessness effects of PCPA by elevating the levels of 5-hydroxytryptamine (5-HT), 4-aminobutyric acid (GABA), and 5-hydroxyindoleacetic acid (5-HIAA), while reducing the levels of dopamine (DA) and norepinephrine (NE), as well as decreasing neuronal death. CONCLUSIONS This research confirmed the sedative and hypnotic properties of ZG and elucidated its probable mechanism involving neurotransmitters.
Collapse
Affiliation(s)
- Yuchen Bao
- State Key Laboratory of Southwestern Chinese Medicine Resources, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China
| | - Hailun Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China
| | - Yue Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China
| | - Chao Wang
- Sichuan Integrative Medicine Hospital, China
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| |
Collapse
|
6
|
Li X, Ullah I, Hou C, Liu Y, Xiao K. Network pharmacology and molecular docking study on the treatment of polycystic ovary syndrome with angelica sinensis- radix rehmanniae drug pair. Medicine (Baltimore) 2023; 102:e36118. [PMID: 37986355 PMCID: PMC10659600 DOI: 10.1097/md.0000000000036118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
This study aimed to investigate the angelica sinensis - radix rehmanniae (AR) role in polycystic ovary syndrome (PCOS), employing network pharmacology and molecular docking techniques for active ingredient, targets, and pathway prediction. AR active components were obtained through TCMSP platform and literature search. The related targets of AR and PCOS were obtained through the disease and Swiss Target Prediction databases. An "active ingredient-target" network map was constructed using Cytoscape software, and gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis was conducted through Hiplot. Finally, Auto Dock Tools software was used to conduct molecular docking between active ingredients and core targets. The main bioactive ingredients of AR in the treatment of PCOS are acteoside, baicalin, caffeic acid, cistanoside F, geniposide, etc. These ingredients involve 10 core targets, such as SRC, HSP90AA1, STAT3, MAPK1, and JUN. The effect of AR on anti-PCOS mainly involves the AGE-RAGE signaling pathway, Relaxin signaling pathway, TNF signaling pathway, and ErbB signaling pathway. Molecular docking results showed that the main active components and key targets of AR could be stably combined. AR can improve hyperandrogen status, regulate glucose homeostasis, and correct lipid metabolism and other physiological processes through multi-component, multi-target, and multi-pathway. Thus, it could play a significant role in PCOS treatment. The results of our study provide a scientific foundation for basic research and clinical applications of AR for the treatment of PCOS.
Collapse
Affiliation(s)
- Xinghua Li
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Ihsan Ullah
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chunxia Hou
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yuqiang Liu
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Keyuan Xiao
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|