1
|
Xu Y, Mao C, Wang Z, Jin G, Zhong L, Qian T. Semantic-enhanced graph neural network for named entity recognition in ancient Chinese books. Sci Rep 2024; 14:17488. [PMID: 39080339 PMCID: PMC11289308 DOI: 10.1038/s41598-024-68561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Named entity recognition (NER) plays a crucial role in the extraction and utilization of knowledge of ancient Chinese books. However, the challenges of ancient Chinese NER not only originate from linguistic features such as the use of single characters and short sentences but are also exacerbated by the scarcity of training data. These factors together limit the capability of deep learning models, like BERT-CRF, in capturing the semantic representation of ancient Chinese characters. In this paper, we explore the semantic enhancement of NER in ancient Chinese books through the utilization of external knowledge. We propose a novel model based on Graph Neural Networks that integrates two different forms of external knowledge: dictionary-level and chapter-level information. Through the Graph Attention Mechanism (GAT), these external knowledge are effectively incorporated into the model's input context. Our model is evaluated on the C_CLUE dataset, showing an improvement of 3.82% over the baseline BAC-CRF model. It also achieves the best score compared to several state-of-the-art dictionary-augmented models.
Collapse
Affiliation(s)
- Yongrui Xu
- School of Computer Science and Technology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Caixia Mao
- School of Electronics and Information Engineering, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Zhiyong Wang
- School of Computer Science and Technology, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Guonian Jin
- School of Computer Science and Technology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Liangji Zhong
- School of Computer Science and Technology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Tao Qian
- School of Computer Science and Technology, Hubei University of Science and Technology, Xianning, 437100, China
| |
Collapse
|
2
|
Natural Language Processing Applications for Computer-Aided Diagnosis in Oncology. Diagnostics (Basel) 2023; 13:diagnostics13020286. [PMID: 36673096 PMCID: PMC9857980 DOI: 10.3390/diagnostics13020286] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
In the era of big data, text-based medical data, such as electronic health records (EHR) and electronic medical records (EMR), are growing rapidly. EHR and EMR are collected from patients to record their basic information, lab tests, vital signs, clinical notes, and reports. EHR and EMR contain the helpful information to assist oncologists in computer-aided diagnosis and decision making. However, it is time consuming for doctors to extract the valuable information they need and analyze the information from the EHR and EMR data. Recently, more and more research works have applied natural language processing (NLP) techniques, i.e., rule-based, machine learning-based, and deep learning-based techniques, on the EHR and EMR data for computer-aided diagnosis in oncology. The objective of this review is to narratively review the recent progress in the area of NLP applications for computer-aided diagnosis in oncology. Moreover, we intend to reduce the research gap between artificial intelligence (AI) experts and clinical specialists to design better NLP applications. We originally identified 295 articles from the three electronic databases: PubMed, Google Scholar, and ACL Anthology; then, we removed the duplicated papers and manually screened the irrelevant papers based on the content of the abstract; finally, we included a total of 23 articles after the screening process of the literature review. Furthermore, we provided an in-depth analysis and categorized these studies into seven cancer types: breast cancer, lung cancer, liver cancer, prostate cancer, pancreatic cancer, colorectal cancer, and brain tumors. Additionally, we identified the current limitations of NLP applications on supporting the clinical practices and we suggest some promising future research directions in this paper.
Collapse
|
3
|
Bashiri FS, Caskey JR, Mayampurath A, Dussault N, Dumanian J, Bhavani SV, Carey KA, Gilbert ER, Winslow CJ, Shah NS, Edelson DP, Afshar M, Churpek MM. Identifying infected patients using semi-supervised and transfer learning. J Am Med Inform Assoc 2022; 29:1696-1704. [PMID: 35869954 PMCID: PMC9471712 DOI: 10.1093/jamia/ocac109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Objectives
Early identification of infection improves outcomes, but developing models for early identification requires determining infection status with manual chart review, limiting sample size. Therefore, we aimed to compare semi-supervised and transfer learning algorithms with algorithms based solely on manual chart review for identifying infection in hospitalized patients.
Materials and Methods
This multicenter retrospective study of admissions to 6 hospitals included “gold-standard” labels of infection from manual chart review and “silver-standard” labels from nonchart-reviewed patients using the Sepsis-3 infection criteria based on antibiotic and culture orders. “Gold-standard” labeled admissions were randomly allocated to training (70%) and testing (30%) datasets. Using patient characteristics, vital signs, and laboratory data from the first 24 hours of admission, we derived deep learning and non-deep learning models using transfer learning and semi-supervised methods. Performance was compared in the gold-standard test set using discrimination and calibration metrics.
Results
The study comprised 432 965 admissions, of which 2724 underwent chart review. In the test set, deep learning and non-deep learning approaches had similar discrimination (area under the receiver operating characteristic curve of 0.82). Semi-supervised and transfer learning approaches did not improve discrimination over models fit using only silver- or gold-standard data. Transfer learning had the best calibration (unreliability index P value: .997, Brier score: 0.173), followed by self-learning gradient boosted machine (P value: .67, Brier score: 0.170).
Discussion
Deep learning and non-deep learning models performed similarly for identifying infection, as did models developed using Sepsis-3 and manual chart review labels.
Conclusion
In a multicenter study of almost 3000 chart-reviewed patients, semi-supervised and transfer learning models showed similar performance for model discrimination as baseline XGBoost, while transfer learning improved calibration.
Collapse
Affiliation(s)
- Fereshteh S Bashiri
- Department of Medicine, University of Wisconsin-Madison , Madison, Wisconsin, USA
| | - John R Caskey
- Department of Medicine, University of Wisconsin-Madison , Madison, Wisconsin, USA
| | - Anoop Mayampurath
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison , Madison, Wisconsin, USA
| | - Nicole Dussault
- Pritzker School of Medicine, University of Chicago , Chicago, Illinois, USA
| | - Jay Dumanian
- Pritzker School of Medicine, University of Chicago , Chicago, Illinois, USA
| | | | - Kyle A Carey
- Department of Medicine, University of Chicago , Chicago, Illinois, USA
| | - Emily R Gilbert
- Department of Medicine, Loyola University , Chicago, Illinois, USA
| | - Christopher J Winslow
- Department of Medicine, NorthShore University HealthSystem , Evanston, Illinois, USA
| | - Nirav S Shah
- Department of Medicine, University of Chicago , Chicago, Illinois, USA
- Department of Medicine, NorthShore University HealthSystem , Evanston, Illinois, USA
| | - Dana P Edelson
- Department of Medicine, University of Chicago , Chicago, Illinois, USA
| | - Majid Afshar
- Department of Medicine, University of Wisconsin-Madison , Madison, Wisconsin, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison , Madison, Wisconsin, USA
| | - Matthew M Churpek
- Department of Medicine, University of Wisconsin-Madison , Madison, Wisconsin, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison , Madison, Wisconsin, USA
| |
Collapse
|
4
|
Information Extraction from the Text Data on Traditional Chinese Medicine: A Review on Tasks, Challenges, and Methods from 2010 to 2021. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1679589. [PMID: 35600940 PMCID: PMC9122692 DOI: 10.1155/2022/1679589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Background The practice of traditional Chinese medicine (TCM) began several thousand years ago, and the knowledge of practitioners is recorded in paper and electronic versions of case notes, manuscripts, and books in multiple languages. Developing a method of information extraction (IE) from these sources to generate a cohesive data set would be a great contribution to the medical field. The goal of this study was to perform a systematic review of the status of IE from TCM sources over the last 10 years. Methods We conducted a search of four literature databases for articles published from 2010 to 2021 that focused on the use of natural language processing (NLP) methods to extract information from unstructured TCM text data. Two reviewers and one adjudicator contributed to article search, article selection, data extraction, and synthesis processes. Results We retrieved 1234 records, 49 of which met our inclusion criteria. We used the articles to (i) assess the key tasks of IE in the TCM domain, (ii) summarize the challenges to extracting information from TCM text data, and (iii) identify effective frameworks, models, and key findings of TCM IE through classification. Conclusions Our analysis showed that IE from TCM text data has improved over the past decade. However, the extraction of TCM text still faces some challenges involving the lack of gold standard corpora, nonstandardized expressions, and multiple types of relations. In the future, IE work should be promoted by extracting more existing entities and relations, constructing gold standard data sets, and exploring IE methods based on a small amount of labeled data. Furthermore, fine-grained and interpretable IE technologies are necessary for further exploration.
Collapse
|
5
|
TCMNER and PubMed: A Novel Chinese Character-Level-Based Model and a Dataset for TCM Named Entity Recognition. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3544281. [PMID: 34413968 PMCID: PMC8369169 DOI: 10.1155/2021/3544281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022]
Abstract
Intelligent traditional Chinese medicine (TCM) has become a popular research field by means of prospering of deep learning technology. Important achievements have been made in such representative tasks as automatic diagnosis of TCM syndromes and diseases and generation of TCM herbal prescriptions. However, one unavoidable issue that still hinders its progress is the lack of labeled samples, i.e., the TCM medical records. As an efficient tool, the named entity recognition (NER) models trained on various TCM resources can effectively alleviate this problem and continuously increase the labeled TCM samples. In this work, on the basis of in-depth analysis, we argue that the performance of the TCM named entity recognition model can be better by using the character-level representation and tagging and propose a novel word-character integrated self-attention module. With the help of TCM doctors and experts, we define 5 classes of TCM named entities and construct a comprehensive NER dataset containing the standard content of the publications and the clinical medical records. The experimental results on this dataset demonstrate the effectiveness of the proposed module.
Collapse
|