Aronson JK. Artificial Intelligence in Pharmacovigilance: An Introduction to Terms, Concepts, Applications, and Limitations.
Drug Saf 2022;
45:407-418. [PMID:
35579806 DOI:
10.1007/s40264-022-01156-5]
[Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 01/29/2023]
Abstract
The tools of artificial intelligence (AI) have enormous potential to enhance activities in pharmacovigilance. Pharmacovigilance experts need not be AI experts, but they should know enough about AI to explore the possibilities of collaboration with those who are. Modern concepts of AI date from Alan Turing's work, especially his paper on "the imitation game", in the late 1940s and early 1950s. Its scope today includes computational skills, including the formulation of mathematical proofs; visual perception, including facial recognition and virtual reality; decision making by expert systems; aspects of language, such as language processing, speech recognition, creative composition, and translation; and combinations of these, e.g. in self-driving vehicles. Machines can be programmed with the ability to learn, using neural networks that mimic cognitive actions of the human brain, leading to deep structural learning. Limitations of AI include difficulties with language, arising from the need to understand context and interpret ambiguities, which particularly affect translation, and inadequacies of databases, requiring careful preparation and curation. New techniques may cause unforeseen difficulties via unexpected malfunctioning. Relevant terms and concepts include different types of machine learning, neural networks, natural language programming, ontologies, and expert systems. Adoption of the tools of AI in pharmacovigilance has been slow. Machine learning, in conjunction with natural language processing and data mining, to study adverse drug reactions in databases such as those found in electronic health records, claims databases, and social media, has the potential to enhance the characterization of known adverse effects and reactions and detect new signals.
Collapse