1
|
Mancini M, McKay JL, Cockx H, D'Cruz N, Esper CD, Filtjens B, Heimler B, MacKinnon CD, Palmerini L, Roerdink M, Young WR, Hausdorff JM. Technology for measuring freezing of gait: Current state of the art and recommendations. JOURNAL OF PARKINSON'S DISEASE 2025; 15:19-40. [PMID: 39973491 DOI: 10.1177/1877718x241301065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
This report summarizes the existing literature on the use of technology for the assessment of freezing of gait (FOG) as well as the use of technology to provide insights into the mechanisms of FOG in people with Parkinson's disease. Specifically, this work was carried out for the 3rd International Workshop on Freezing of Gait in Jerusalem in 2023. This review focuses on the most used technologies to quantitatively assess FOG in a laboratory environment and describes the technologies that hold promise for assessing FOG in daily life. Examples of implementation of machine learning algorithms are provided as well as algorithmic biases. Lastly, a standardized assessment using inertial measurement units during a clinical protocol is proposed and a 5-year outlook is discussed. We anticipate this review will help move the field forward in the coming years.
Collapse
Affiliation(s)
- Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - J Lucas McKay
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Helena Cockx
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nicholas D'Cruz
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Christine D Esper
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin Filtjens
- Department of Electrical Engineering (ESAT), eMedia Research Lab/STADIUS, KU Leuven, Leuven, Belgium
- Department of Mechanical Engineering, Intelligent Mobile Platforms Research Group, KU Leuven, Leuven, Belgium
| | - Benedetta Heimler
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Luca Palmerini
- Department of Electrical, Electronic and Information Engineering «Guglielmo Marconi», University of Bologna, Bologna, Italy
| | - Melvyn Roerdink
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - William R Young
- School of Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physical Therapy, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Orthopedic Surgery and Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Rodríguez Mallma MJ, Zuloaga-Rotta L, Borja-Rosales R, Rodríguez Mallma JR, Vilca-Aguilar M, Salas-Ojeda M, Mauricio D. Explainable Machine Learning Models for Brain Diseases: Insights from a Systematic Review. Neurol Int 2024; 16:1285-1307. [PMID: 39585057 PMCID: PMC11587041 DOI: 10.3390/neurolint16060098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
In recent years, Artificial Intelligence (AI) methods, specifically Machine Learning (ML) models, have been providing outstanding results in different areas of knowledge, with the health area being one of its most impactful fields of application. However, to be applied reliably, these models must provide users with clear, simple, and transparent explanations about the medical decision-making process. This systematic review aims to investigate the use and application of explainability in ML models used in brain disease studies. A systematic search was conducted in three major bibliographic databases, Web of Science, Scopus, and PubMed, from January 2014 to December 2023. A total of 133 relevant studies were identified and analyzed out of a total of 682 found in the initial search, in which the explainability of ML models in the medical context was studied, identifying 11 ML models and 12 explainability techniques applied in the study of 20 brain diseases.
Collapse
Affiliation(s)
- Mirko Jerber Rodríguez Mallma
- Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería, Lima 15333, Peru; (M.J.R.M.); (L.Z.-R.)
| | - Luis Zuloaga-Rotta
- Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería, Lima 15333, Peru; (M.J.R.M.); (L.Z.-R.)
| | - Rubén Borja-Rosales
- Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería, Lima 15333, Peru; (M.J.R.M.); (L.Z.-R.)
| | - Josef Renato Rodríguez Mallma
- Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería, Lima 15333, Peru; (M.J.R.M.); (L.Z.-R.)
| | | | - María Salas-Ojeda
- Facultad de Artes y Humanidades, Universidad San Ignacio de Loyola, Lima 15024, Peru
| | - David Mauricio
- Facultad de Ingeniería de Sistemas e Informática, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| |
Collapse
|
3
|
Wang B, Hu X, Ge R, Xu C, Zhang J, Gao Z, Zhao S, Polat K. Prediction of Freezing of Gait in Parkinson's disease based on multi-channel time-series neural network. Artif Intell Med 2024; 154:102932. [PMID: 39004005 DOI: 10.1016/j.artmed.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Freezing of Gait (FOG) is a noticeable symptom of Parkinson's disease, like being stuck in place and increasing the risk of falls. The wearable multi-channel sensor system is an efficient method to predict and monitor the FOG, thus warning the wearer to avoid falls and improving the quality of life. However, the existing approaches for the prediction of FOG mainly focus on a single sensor system and cannot handle the interference between multi-channel wearable sensors. Hence, we propose a novel multi-channel time-series neural network (MCT-Net) approach to merge multi-channel gait features into a comprehensive prediction framework, alerting patients to FOG symptoms in advance. Owing to the causal distributed convolution, MCT-Net is a real-time method available to give optimal prediction earlier and implemented in remote devices. Moreover, intra-channel and inter-channel transformers of MCT-Net extract and integrate different sensor position features into a unified deep learning model. Compared with four other state-of-the-art FOG prediction baselines, the proposed MCT-Net obtains 96.21% in accuracy and 80.46% in F1-score on average 2 s before FOG occurrence, demonstrating the superiority of MCT-Net.
Collapse
Affiliation(s)
| | - Xuegang Hu
- Hefei University of Technology, Hefei, China.
| | - Rongjun Ge
- Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Chenchu Xu
- Institute of Artificial Intelligence, Hefei, China; Anhui University, Hefei, China.
| | | | - Zhifan Gao
- Sun Yat-sen University, Shenzhen, China.
| | | | - Kemal Polat
- Bolu Abant Izzet Baysal University, Bolu, Turkey.
| |
Collapse
|
4
|
Elbatanouny H, Kleanthous N, Dahrouj H, Alusi S, Almajali E, Mahmoud S, Hussain A. Insights into Parkinson's Disease-Related Freezing of Gait Detection and Prediction Approaches: A Meta Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3959. [PMID: 38931743 PMCID: PMC11207947 DOI: 10.3390/s24123959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's Disease (PD) is a complex neurodegenerative disorder characterized by a spectrum of motor and non-motor symptoms, prominently featuring the freezing of gait (FOG), which significantly impairs patients' quality of life. Despite extensive research, the precise mechanisms underlying FOG remain elusive, posing challenges for effective management and treatment. This paper presents a comprehensive meta-analysis of FOG prediction and detection methodologies, with a focus on the integration of wearable sensor technology and machine learning (ML) approaches. Through an exhaustive review of the literature, this study identifies key trends, datasets, preprocessing techniques, feature extraction methods, evaluation metrics, and comparative analyses between ML and non-ML approaches. The analysis also explores the utilization of cueing devices. The limited adoption of explainable AI (XAI) approaches in FOG prediction research represents a significant gap. Improving user acceptance and comprehension requires an understanding of the logic underlying algorithm predictions. Current FOG detection and prediction research has a number of limitations, which are identified in the discussion. These include issues with cueing devices, dataset constraints, ethical and privacy concerns, financial and accessibility restrictions, and the requirement for multidisciplinary collaboration. Future research avenues center on refining explainability, expanding and diversifying datasets, adhering to user requirements, and increasing detection and prediction accuracy. The findings contribute to advancing the understanding of FOG and offer valuable guidance for the development of more effective detection and prediction methodologies, ultimately benefiting individuals affected by PD.
Collapse
Affiliation(s)
- Hagar Elbatanouny
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | | | - Hayssam Dahrouj
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | - Sundus Alusi
- The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK;
| | - Eqab Almajali
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | - Soliman Mahmoud
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
- University of Khorfakkan, Khorfakkan, Sharjah 18119, United Arab Emirates
| | - Abir Hussain
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| |
Collapse
|
5
|
Yang PK, Filtjens B, Ginis P, Goris M, Nieuwboer A, Gilat M, Slaets P, Vanrumste B. Freezing of gait assessment with inertial measurement units and deep learning: effect of tasks, medication states, and stops. J Neuroeng Rehabil 2024; 21:24. [PMID: 38350964 PMCID: PMC10865632 DOI: 10.1186/s12984-024-01320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Freezing of gait (FOG) is an episodic and highly disabling symptom of Parkinson's Disease (PD). Traditionally, FOG assessment relies on time-consuming visual inspection of camera footage. Therefore, previous studies have proposed portable and automated solutions to annotate FOG. However, automated FOG assessment is challenging due to gait variability caused by medication effects and varying FOG-provoking tasks. Moreover, whether automated approaches can differentiate FOG from typical everyday movements, such as volitional stops, remains to be determined. To address these questions, we evaluated an automated FOG assessment model with deep learning (DL) based on inertial measurement units (IMUs). We assessed its performance trained on all standardized FOG-provoking tasks and medication states, as well as on specific tasks and medication states. Furthermore, we examined the effect of adding stopping periods on FOG detection performance. METHODS Twelve PD patients with self-reported FOG (mean age 69.33 ± 6.02 years) completed a FOG-provoking protocol, including timed-up-and-go and 360-degree turning-in-place tasks in On/Off dopaminergic medication states with/without volitional stopping. IMUs were attached to the pelvis and both sides of the tibia and talus. A temporal convolutional network (TCN) was used to detect FOG episodes. FOG severity was quantified by the percentage of time frozen (%TF) and the number of freezing episodes (#FOG). The agreement between the model-generated outcomes and the gold standard experts' video annotation was assessed by the intra-class correlation coefficient (ICC). RESULTS For FOG assessment in trials without stopping, the agreement of our model was strong (ICC (%TF) = 0.92 [0.68, 0.98]; ICC(#FOG) = 0.95 [0.72, 0.99]). Models trained on a specific FOG-provoking task could not generalize to unseen tasks, while models trained on a specific medication state could generalize to unseen states. For assessment in trials with stopping, the agreement of our model was moderately strong (ICC (%TF) = 0.95 [0.73, 0.99]; ICC (#FOG) = 0.79 [0.46, 0.94]), but only when stopping was included in the training data. CONCLUSION A TCN trained on IMU signals allows valid FOG assessment in trials with/without stops containing different medication states and FOG-provoking tasks. These results are encouraging and enable future work investigating automated FOG assessment during everyday life.
Collapse
Affiliation(s)
- Po-Kai Yang
- eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
- Intelligent Mobile Platforms Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
| | - Benjamin Filtjens
- eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
- Intelligent Mobile Platforms Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| | - Pieter Ginis
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Maaike Goris
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Alice Nieuwboer
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Moran Gilat
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Peter Slaets
- Intelligent Mobile Platforms Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| | - Bart Vanrumste
- eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| |
Collapse
|
6
|
Wu P, Cao B, Liang Z, Wu M. The advantages of artificial intelligence-based gait assessment in detecting, predicting, and managing Parkinson's disease. Front Aging Neurosci 2023; 15:1191378. [PMID: 37502426 PMCID: PMC10368956 DOI: 10.3389/fnagi.2023.1191378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/29/2023] Open
Abstract
Background Parkinson's disease is a neurological disorder that can cause gait disturbance, leading to mobility issues and falls. Early diagnosis and prediction of freeze episodes are essential for mitigating symptoms and monitoring the disease. Objective This review aims to evaluate the use of artificial intelligence (AI)-based gait evaluation in diagnosing and managing Parkinson's disease, and to explore the potential benefits of this technology for clinical decision-making and treatment support. Methods A thorough review of published literature was conducted to identify studies, articles, and research related to AI-based gait evaluation in Parkinson's disease. Results AI-based gait evaluation has shown promise in preventing freeze episodes, improving diagnosis, and increasing motor independence in patients with Parkinson's disease. Its advantages include higher diagnostic accuracy, continuous monitoring, and personalized therapeutic interventions. Conclusion AI-based gait evaluation systems hold great promise for managing Parkinson's disease and improving patient outcomes. They offer the potential to transform clinical decision-making and inform personalized therapies, but further research is needed to determine their effectiveness and refine their use.
Collapse
Affiliation(s)
- Peng Wu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Biwei Cao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Academy of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Zhendong Liang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Miao Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Academy of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
7
|
Di Martino F, Delmastro F. Explainable AI for clinical and remote health applications: a survey on tabular and time series data. Artif Intell Rev 2022; 56:5261-5315. [PMID: 36320613 PMCID: PMC9607788 DOI: 10.1007/s10462-022-10304-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractNowadays Artificial Intelligence (AI) has become a fundamental component of healthcare applications, both clinical and remote, but the best performing AI systems are often too complex to be self-explaining. Explainable AI (XAI) techniques are defined to unveil the reasoning behind the system’s predictions and decisions, and they become even more critical when dealing with sensitive and personal health data. It is worth noting that XAI has not gathered the same attention across different research areas and data types, especially in healthcare. In particular, many clinical and remote health applications are based on tabular and time series data, respectively, and XAI is not commonly analysed on these data types, while computer vision and Natural Language Processing (NLP) are the reference applications. To provide an overview of XAI methods that are most suitable for tabular and time series data in the healthcare domain, this paper provides a review of the literature in the last 5 years, illustrating the type of generated explanations and the efforts provided to evaluate their relevance and quality. Specifically, we identify clinical validation, consistency assessment, objective and standardised quality evaluation, and human-centered quality assessment as key features to ensure effective explanations for the end users. Finally, we highlight the main research challenges in the field as well as the limitations of existing XAI methods.
Collapse
|
8
|
Guo Y, Yang J, Liu Y, Chen X, Yang GZ. Detection and assessment of Parkinson's disease based on gait analysis: A survey. Front Aging Neurosci 2022; 14:916971. [PMID: 35992585 PMCID: PMC9382193 DOI: 10.3389/fnagi.2022.916971] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders represent one of the leading causes of disability and mortality in the world. Parkinson's Disease (PD), for example, affecting millions of people worldwide is often manifested as impaired posture and gait. These impairments have been used as a clinical sign for the early detection of PD, as well as an objective index for pervasive monitoring of the PD patients in daily life. This review presents the evidence that demonstrates the relationship between human gait and PD, and illustrates the role of different gait analysis systems based on vision or wearable sensors. It also provides a comprehensive overview of the available automatic recognition systems for the detection and management of PD. The intervening measures for improving gait performance are summarized, in which the smart devices for gait intervention are emphasized. Finally, this review highlights some of the new opportunities in detecting, monitoring, and treating of PD based on gait, which could facilitate the development of objective gait-based biomarkers for personalized support and treatment of PD.
Collapse
Affiliation(s)
- Yao Guo
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxuan Liu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Xun Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Filtjens B, Ginis P, Nieuwboer A, Slaets P, Vanrumste B. Automated freezing of gait assessment with marker-based motion capture and multi-stage spatial-temporal graph convolutional neural networks. J Neuroeng Rehabil 2022; 19:48. [PMID: 35597950 PMCID: PMC9124420 DOI: 10.1186/s12984-022-01025-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Freezing of gait (FOG) is a common and debilitating gait impairment in Parkinson's disease. Further insight into this phenomenon is hampered by the difficulty to objectively assess FOG. To meet this clinical need, this paper proposes an automated motion-capture-based FOG assessment method driven by a novel deep neural network. METHODS Automated FOG assessment can be formulated as an action segmentation problem, where temporal models are tasked to recognize and temporally localize the FOG segments in untrimmed motion capture trials. This paper takes a closer look at the performance of state-of-the-art action segmentation models when tasked to automatically assess FOG. Furthermore, a novel deep neural network architecture is proposed that aims to better capture the spatial and temporal dependencies than the state-of-the-art baselines. The proposed network, termed multi-stage spatial-temporal graph convolutional network (MS-GCN), combines the spatial-temporal graph convolutional network (ST-GCN) and the multi-stage temporal convolutional network (MS-TCN). The ST-GCN captures the hierarchical spatial-temporal motion among the joints inherent to motion capture, while the multi-stage component reduces over-segmentation errors by refining the predictions over multiple stages. The proposed model was validated on a dataset of fourteen freezers, fourteen non-freezers, and fourteen healthy control subjects. RESULTS The experiments indicate that the proposed model outperforms four state-of-the-art baselines. Moreover, FOG outcomes derived from MS-GCN predictions had an excellent (r = 0.93 [0.87, 0.97]) and moderately strong (r = 0.75 [0.55, 0.87]) linear relationship with FOG outcomes derived from manual annotations. CONCLUSIONS The proposed MS-GCN may provide an automated and objective alternative to labor-intensive clinician-based FOG assessment. Future work is now possible that aims to assess the generalization of MS-GCN to a larger and more varied verification cohort.
Collapse
Affiliation(s)
- Benjamin Filtjens
- Department of Electrical Engineering (ESAT), eMedia Research Lab/STADIUS, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium. .,Department of Mechanical Engineering, Intelligent Mobile Platforms Research Group, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
| | - Pieter Ginis
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Peter Slaets
- Department of Mechanical Engineering, Intelligent Mobile Platforms Research Group, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| | - Bart Vanrumste
- Department of Electrical Engineering (ESAT), eMedia Research Lab/STADIUS, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| |
Collapse
|