1
|
Wang M, Xue L, Fei Z, Luo L, Zhang K, Gao Y, Liu X, Liu C. Characterization of mitochondrial metabolism related molecular subtypes and immune infiltration in colorectal adenocarcinoma. Sci Rep 2024; 14:24326. [PMID: 39414905 PMCID: PMC11484867 DOI: 10.1038/s41598-024-75482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Colorectal adenocarcinoma (COAD) is the most common subtype of colorectal cancer. Due to the imperfect prognosis of COAD, related prognostic factors and possible mechanisms need to be further investigated. During tumor development, mitochondria help tumor cells survive in a variety of ways, so that further screening of mitochondrial metabolism related targets has positive implications for COAD. We screened the mitochondrial metabolism-related genes (MMRG) associated with the COAD prognosis and explored the MMRG-related molecular subtype characteristics of by unsupervised consensus clustering analysis. Using ESTIMATE and ssGSEA algorithms, we evaluated the immunoinfiltration characteristic landscape of different molecular subtypes defined by MMRG. Combining the expression profiles of differentially expressed genes associated with the MMRG subgroup and the survival characteristics of COAD, we constructed an MMRG prognostic model using LASSO-univariate Cox analysis and successfully validated its impact on independently predicting risk stratification of COAD. The potential clinical value of the MMRG score was subsequently evaluated by subgroup immunoinfiltration characteristics and drug susceptibility prediction analysis. We also offer SEC11A as a new potential target for COAD by single-cell sequencing analysis. The effect of SEC11A on the proliferation, invasion abilities and mitochondrial dysfunction of COAD cells was confirmed through in vitro experiments. Our study provides new insights into the role of MMRG and new target for COAD potential intervention.
Collapse
Affiliation(s)
- Meng Wang
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China
| | - Lingkai Xue
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China
| | - Zhenyue Fei
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China
| | - Lei Luo
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kai Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuxi Gao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Chengkui Liu
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China.
| |
Collapse
|
2
|
Yang K, Zhu T, Sheng C, Zhu J, Xu J, Fu G. Expression and prognostic impact of VDAC3 in colorectal adenocarcinoma. Transl Cancer Res 2024; 13:4736-4751. [PMID: 39430839 PMCID: PMC11483328 DOI: 10.21037/tcr-24-402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background Colorectal adenocarcinoma (COAD) is a malignant tumor with high mortality and low 5-year survival rate. Voltage-dependent anion channel 3 (VDAC3) is the least understood isoform of voltage-dependent anion-selective channels in the mitochondrial outer membrane. In this thesis, we aimed to investigate the prognostic value of VDAC3 and provide new insights into colon adenocarcinoma. Methods We utilized The Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) database, Human Protein Atlas online database, and the University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) database to analyze VDAC3 expression in COAD and assess patient survival rates. Univariate and multivariate Cox regression analyses were employed to evaluate VDAC3's prognostic significance for COAD. Gene set variation analysis (GSVA) was utilized to explore COAD-related signaling pathways associated with VDAC3. Additionally, we predicted the relationship between VDAC3 expression and anticancer drug sensitivity using the CellMiner database. Results In the TCGA database, VDAC3 demonstrated elevated expression levels in COAD, which was further validated by findings from the GEO database. Survival analysis conducted using Kaplan-Meier (K-M) curves highlighted that the patients with decreased VDAC3 expression exhibited significantly shorter overall survival durations. VDAC3 expression demonstrated correlation with COAD pathological stage. VDAC3 gene mutation was linked to COAD outcomes. Cox regression analysis showed that VDAC3 was an independent predictor. In addition, GSVA analysis showed that VDAC3 was closely related to mitochondria-related biological processes and involved in the occurrence and development of mitochondria-related diseases. Finally, analysis of the CellMiner database predicted that VDAC3 expression was positively correlated with chelerythrine and cladribine, but negatively correlated with Ergenyl. Conclusions Our study suggests that VDAC3 may be a potential biomarker for early diagnosis, prognosis, and treatment of COAD.
Collapse
Affiliation(s)
- Kaiqiang Yang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caixia Sheng
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Fang Y, Zhang Q, Guo C, Zheng R, Liu B, Zhang Y, Wu J. Mitochondrial-related genes as prognostic and metastatic markers in breast cancer: insights from comprehensive analysis and clinical models. Front Immunol 2024; 15:1461489. [PMID: 39380996 PMCID: PMC11458410 DOI: 10.3389/fimmu.2024.1461489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Background Breast cancer (BC) constitutes a significant peril to global women's health. Contemporary research progressively suggests that mitochondrial dysfunction plays a pivotal role in both the inception and advancement of BC. However, investigations delving into the correlation between mitochondrial-related genes (MRGs) and the prognosis and metastasis of BC are still infrequent. Methods Utilizing data from the TCGA database, we employed the "limma" R package for differential expression analysis. Subsequently, both univariate and multivariate Cox regression analyses were executed, alongside LASSO Cox regression analysis, to pinpoint prognostic MRGs and to further develop the prognostic model. External validation (GSE88770 merged GSE425680) and internal validation were further conducted. Our investigation delved into a broad spectrum of analyses that included functional enrichment, metabolic and immune characteristics, immunotherapy response prediction, intratumor heterogeneity (ITH), mutation, tumor mutational burden (TMB), microsatellite instability (MSI), cellular stemness, single-cell, and drug sensitivity analysis. We validated the protein and mRNA expressions of prognostic MRGs in tissues and cell lines through immunohistochemistry and qRT-PCR. Moreover, leveraging the GSE102484 dataset, we conducted differential gene expression analysis to identify MRGs related to metastasis, subsequently developing metastasis models via 10 distinct machine-learning algorithms and then selecting the best-performing model. The division between training and validation cohorts was set at 70% and 30%, respectively. Results A prognostic model was constructed by 9 prognostic MRGs, which were DCTPP1, FEZ1, KMO, NME3, CCR7, ISOC2, STAR, COMTD1, and ESR2. Patients within the high-risk group experienced more adverse outcomes than their counterparts in the low-risk group. The ROC curves and constructed nomogram showed that the model exhibited an excellent ability to predict overall survival (OS) for patients and the risk score was identified as an independent prognostic factor. The functional enrichment analysis showed a strong correlation between metabolic progression and MRGs. Additional research revealed that the discrepancies in outcomes between the two risk categories may be attributed to a variety of metabolic and immune characteristics, as well as differences in intratumor heterogeneity (ITH), tumor mutational burden (TMB), and cancer stemness indices. ITH, TIDE, and IPS analyses suggested that patients possessing a low-risk score may exhibit enhanced responsiveness to immunotherapy. Additionally, distant metastasis models were established by PDK4, NRF1, DCAF8, CHPT1, MARS2 and NAMPT. Among these, the XGBoost model showed the best predicting ability. Conclusion In conclusion, MRGs significantly influence the prognosis and metastasis of BC. The development of dual clinical prediction models offers crucial insights for tailored and precise therapeutic strategies, and paves the way for exploring new avenues in understanding the pathogenesis of BC.
Collapse
Affiliation(s)
- Yutong Fang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qunchen Zhang
- Department of Breast Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Cuiping Guo
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Rongji Zheng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Bing Liu
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yongqu Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jundong Wu
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
4
|
Jusic A, Erpapazoglou Z, Dalgaard LT, Lakkisto P, de Gonzalo-Calvo D, Benczik B, Ágg B, Ferdinandy P, Fiedorowicz K, Schroen B, Lazou A, Devaux Y. Guidelines for mitochondrial RNA analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102262. [PMID: 39091381 PMCID: PMC11292373 DOI: 10.1016/j.omtn.2024.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mitochondria are the energy-producing organelles of mammalian cells with critical involvement in metabolism and signaling. Studying their regulation in pathological conditions may lead to the discovery of novel drugs to treat, for instance, cardiovascular or neurological diseases, which affect high-energy-consuming cells such as cardiomyocytes, hepatocytes, or neurons. Mitochondria possess both protein-coding and noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and piwi-interacting RNAs, encoded by the mitochondria or the nuclear genome. Mitochondrial RNAs are involved in anterograde-retrograde communication between the nucleus and mitochondria and play an important role in physiological and pathological conditions. Despite accumulating evidence on the presence and biogenesis of mitochondrial RNAs, their study continues to pose significant challenges. Currently, there are no standardized protocols and guidelines to conduct deep functional characterization and expression profiling of mitochondrial RNAs. To overcome major obstacles in this emerging field, the EU-CardioRNA and AtheroNET COST Action networks summarize currently available techniques and emphasize critical points that may constitute sources of variability and explain discrepancies between published results. Standardized methods and adherence to guidelines to quantify and study mitochondrial RNAs in normal and disease states will improve research outputs, their reproducibility, and translation potential to clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Zoi Erpapazoglou
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bettina Benczik
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | | | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - on behalf of EU-CardioRNA COST Action CA17129
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - AtheroNET COST Action CA21153
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Chen X, Sun B, Li S. Downregulation of HIGD1B induces mitochondria-mediated apoptosis in gastric cancer cells by inactivating Akt and ERK pathways. Drug Dev Res 2024; 85:e22221. [PMID: 38863387 DOI: 10.1002/ddr.22221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Hypoxia-inducible domain (HIGD) family members (e.g., HIGD1A) have been linked to tumor progression. However, the role of HIGD1B (another HIGD family member) in GC has yet to be fully understood. Based on data from TCGA_GC, GSE65801, and GSE65801 data sets, HIGD1B levels were evaluated in normal and GC tissues. Next, HIGD1B levels were validated by reverse transcription-quantitative PCR and western blot analysis analyses. Meanwhile, patients with GC in the TCGA_GC cohort were grouped into high- and low-HIGD1B level groups, and overall survival, functional enrichment, and immune infiltration were analyzed. Additionally, gain- and loss-of-function experiments were performed to determine the function of HIGD1B in GC cells. Compared to normal controls, HIGD1B mRNA levels were significantly elevated in GC tissues. Moreover, high HIGD1B levels may be an independent indicator of poor prognosis in patients with GC. Additionally, high HIGD1B levels were correlated with high stromal and ESTIMATE scores and elevated expression of immune checkpoints in patients with GC. Functional analyses showed that HIGD1B deficiency notably suppressed GC cell proliferation, migration, and invasion. Moreover, HIGD1B deficiency significantly induced mitochondria-mediated apoptosis in GC cells by inactivating Akt and ERK pathways. Collectively, HIGD1B may predict the prognosis of patients with GC and may function as an oncogene in GC. These findings suggest that HIGD1B may serve as a prognostic biomarker and potential therapeutic target in GC.
Collapse
Affiliation(s)
- Xiangyu Chen
- The Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binghua Sun
- The Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Li
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Lv L, Huang Y, Li Q, Wu Y, Zheng L. A Comprehensive Prognostic Model for Colon Adenocarcinoma Depending on Nuclear-Mitochondrial-Related Genes. Technol Cancer Res Treat 2024; 23:15330338241258570. [PMID: 38832431 PMCID: PMC11149454 DOI: 10.1177/15330338241258570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Background: Colon adenocarcinoma (COAD) has increasing incidence and is one of the most common malignant tumors. The mitochondria involved in cell energy metabolism, oxygen free radical generation, and cell apoptosis play important roles in tumorigenesis and progression. The relationship between mitochondrial genes and COAD remains largely unknown. Methods: COAD data including 512 samples were set out from the UCSC Xena database. The nuclear mitochondrial-related genes (NMRGs)-related risk prognostic model and prognostic nomogram were constructed, and NMRGs-related gene mutation and the immune environment were analyzed using bioinformatics methods. Then, a liver metastasis model of colorectal cancer was constructed and protein expression was detected using Western blot assay. Results: A prognostic model for COAD was constructed. Comparing the prognostic model dataset and the validation dataset showed considerable correlation in both risk grouping and prognosis. Based on the risk score (RS) model, the samples of the prognostic dataset were divided into high risk group and low risk group. Moreover, pathologic N and T stage and tumor recurrence in the two risk groups were significantly different. The four prognostic factors, including age and pathologic T stage in the nomogram survival model also showed excellent predictive performance. An optimal combination of nine differentially expressed NMRGs was finally obtained, including LARS2, PARS2, ETHE1, LRPPRC, TMEM70, AARS2, ACAD9, VARS2, and ATP8A2. The high-RS group had more inflamed immune features, including T and CD4+ memory cell activation. Besides, mitochondria-associated LRPPRC and LARS2 expression levels were increased in vivo xenograft construction and liver metastases assays. Conclusion: This study established a comprehensive prognostic model for COAD, incorporating nine genes associated with nuclear-mitochondrial functions. This model demonstrates superior predictive performance across four prognostic factors: age, pathological T stage, tumor recurrence, and overall prognosis. It is anticipated to be an effective model for enhancing the prognosis and treatment of COAD.
Collapse
Affiliation(s)
- Lingling Lv
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuqing Huang
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Wu
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Bhasin N, Dabra P, Senavirathna L, Pan S, Chen R. Inhibition of TRAP1 Accelerates the DNA Damage Response, Activation of the Heat Shock Response and Metabolic Reprogramming in Colon Cancer Cells. FRONT BIOSCI-LANDMRK 2023; 28:227. [PMID: 37796715 PMCID: PMC10727129 DOI: 10.31083/j.fbl2809227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. The tumor microenvironment plays a significant role in CRC development, progression and metastasis. Oxidative stress in the colon is a major etiological factor impacting tumor progression. Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial member of the heat shock protein 90 (HSP90) family that is involved in modulating apoptosis in colon cancer cells under oxidative stress. We undertook this study to provide mechanistic insight into the role of TRAP1 under oxidative stress in colon cells. METHODS We first assessed the The Cancer Genome Atlas (TCGA) CRC gene expression dataset to evaluate the expression of TRAP1 and its association with oxidative stress and disease progression. We then treated colon HCT116 cells with hydrogen peroxide to induce oxidative stress and with the TRAP1 inhibitor gamitrinib-triphenylphosphonium (GTPP) to inhibit TRAP1. We examined the cellular proteomic landscape using liquid chromatography tandem mass spectrometry (LC-MS/MS) in this context compared to controls. We further examined the impact of treatment on DNA damage and cell survival. RESULTS TRAP1 expression under oxidative stress is associated with the disease outcomes of colorectal cancer. TRAP1 inhibition under oxidative stress induced metabolic reprogramming and heat shock factor 1 (HSF1)-dependent transactivation. In addition, we also observed enhanced induction of DNA damage and cell death in the cells under oxidative stress and TRAP1 inhibition in comparison to single treatments and the nontreatment control. CONCLUSIONS These findings provide new insights into TRAP1-driven metabolic reprogramming in response to oxidative stress.
Collapse
Affiliation(s)
- Nobel Bhasin
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Prerna Dabra
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, University of Texas at Houston Health Science Center, Houston, TX, United States
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas at Houston Health Science Center, Houston, TX, United States
| | - Ru Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Hu G, Li J, Zeng Y, Liu L, Yu Z, Qi X, Liu K, Yao H. The anoikis-related gene signature predicts survival accurately in colon adenocarcinoma. Sci Rep 2023; 13:13919. [PMID: 37626132 PMCID: PMC10457303 DOI: 10.1038/s41598-023-40907-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Colon adenocarcinoma (COAD) is a serious public health problem, the third most common cancer and the second most deadly cancer in the world. About 9.4% of cancer-related deaths in 2020 were due to COAD. Anoikis is a specialized form of programmed cell death that plays an important role in tumor invasion and metastasis. The presence of anti-anoikis factors is associated with tumor aggressiveness and drug resistance. Various bioinformatic methods, such as differential expression analysis, and functional annotation analysis, machine learning, were used in this study. RNA-sequencing and clinical data from COAD patients were obtained from the Gene expression omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Construction of a prognostic nomogram for predicting overall survival (OS) using multivariate analysis and Lasso-Cox regression. Immunohistochemistry (IHC) was our method of validating the expression of seven genes that are linked to anoikis in COAD. We identified seven anoikis-related genes as predictors of COAD survival and prognosis, and confirmed their accuracy in predicting colon adenocarcinoma prognosis by KM survival curves and ROC curves. A seven-gene risk score consisting of NAT1, CDC25C, ATP2A3, MMP3, EEF1A2, PBK, and TIMP1 showed strong prognostic value. Meanwhile, we made a nomogram to predict the survival rate of COAD patients. The immune infiltration assay showed T cells. CD4 memory. Rest and macrophages. M0 has a higher proportion in COAD, and 11 genes related to tumor immunity are important. GDSC2-based drug susceptibility analysis showed that 6 out of 198 drugs were significant in COAD. Anoikis-related genes have potential value in predicting the prognosis of COAD and provide clues for developing new therapeutic strategies for COAD. Immune infiltration and drug susceptibility results provide important clues for finding new personalized treatment options for COAD. These findings also suggest possible mechanisms that may affect prognosis. These results are the starting point for planning individualized treatment and managing patient outcomes.
Collapse
Affiliation(s)
- Gunchu Hu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Jian Li
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Yi Zeng
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, 410011, China
| | - Lixin Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Zhuowen Yu
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine of Hunan Province, Changsha, 410011, China
| | - Xiaoyan Qi
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.
| | - Hongliang Yao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|