1
|
Lannan J, Floyd C, Xu LX, Yan C, Marshall WF, Vaikuntanathan S, Dinner AR, Honts JE, Bhamla S, Elting MW. Fishnet mesh of centrin-Sfi1 drives ultrafast calcium-activated contraction of the giant cell Spirostomum ambiguum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622534. [PMID: 39574644 PMCID: PMC11581044 DOI: 10.1101/2024.11.07.622534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Spirostomum is a unicellular ciliate capable of contracting to a quarter of its body length in less than five milliseconds. When measured as fractional shortening, this is an order of magnitude faster than motion powered by actomyosin. Myonemes, which are protein networks found near the cortex of many protists, are believed to power Spirostomum contraction. Fast contraction, slow elongation, and calcium-triggering are hallmarks of myoneme-based motion. The biochemical basis of this motion and the molecular mechanism that supports such fast speeds are not well understood. Previous work suggests that myoneme structures in some protists are rich in centrin and Sfi1 homologs, two proteins that may underlie contraction. Centrin undergoes a significant conformational change in the presence of calcium, allowing it to bind to other centrin molecules. To understand Spirostomum contraction, we measure changes in cortical structures and model contraction of the whole cell and of the underlying protein complexes. We provide evidence that centrin/Sfi1 structures are responsible for contraction, which we propose is powered by a modulated entropic spring. Using this model, we recapitulate organismal-scale contraction in mesh simulation experiments and demonstrate the importance of structural organization of myoneme in a fishnet-like structure. These results provide a cohesive, multiscale model for the contraction of Spirostomum . Deeper understanding of how single cells can execute extreme shape changes holds potential for advancing cell biophysics, synthetically engineering contractile machinery, and cellular-inspired engineering designs.
Collapse
|
2
|
Sambani K, Kontomaris SV, Yova D. Atomic Force Microscopy Imaging of Elastin Nanofibers Self-Assembly. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4313. [PMID: 37374496 DOI: 10.3390/ma16124313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Elastin is an extracellular matrix protein, providing elasticity to the organs, such as skin, blood vessels, lungs and elastic ligaments, presenting self-assembling ability to form elastic fibers. The elastin protein, as a component of elastin fibers, is one of the major proteins found in connective tissue and is responsible for the elasticity of tissues. It provides resilience to the human body, assembled as a continuous mesh of fibers that require to be deformed repetitively and reversibly. Thus, it is of great importance to investigate the development of the nanostructural surface of elastin-based biomaterials. The purpose of this research was to image the self-assembling process of elastin fiber structure under different experimental parameters such as suspension medium, elastin concentration, temperature of stock suspension and time interval after the preparation of the stock suspension. atomic force microscopy (AFM) was applied in order to investigate how different experimental parameters affected fiber development and morphology. The results demonstrated that through altering a number of experimental parameters, it was possible to affect the self-assembly procedure of elastin fibers from nanofibers and the formation of elastin nanostructured mesh consisting of naturally occurring fibers. Further clarification of the contribution of different parameters on fibril formation will enable the design and control of elastin-based nanobiomaterials with predetermined characteristics.
Collapse
Affiliation(s)
- Kyriaki Sambani
- Biomedical Optics and Applied Biophysics Laboratory, Division of Electromagnetics, School of Electrical and Computer Engineering, Electrooptics and Electronic Materials, National Technical University of Athens, 9, Iroon Polytechniou, 15780 Athens, Greece
| | - Stylianos Vasileios Kontomaris
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece
- BioNanoTec Ltd., 2404 Nicosia, Cyprus
| | - Dido Yova
- Biomedical Optics and Applied Biophysics Laboratory, Division of Electromagnetics, School of Electrical and Computer Engineering, Electrooptics and Electronic Materials, National Technical University of Athens, 9, Iroon Polytechniou, 15780 Athens, Greece
| |
Collapse
|
3
|
Holstein TW. The Hydra stem cell system - Revisited. Cells Dev 2023; 174:203846. [PMID: 37121433 DOI: 10.1016/j.cdev.2023.203846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Cnidarians are >600 million years old and are considered the sister group of Bilateria based on numerous molecular phylogenetic studies. Apart from Hydra, the genomes of all major clades of Cnidaria have been uncovered (e.g. Aurelia, Clytia, Nematostella and Acropora) and they reveal a remarkable completeness of the metazoan genomic toolbox. Of particular interest is Hydra, a model system of aging research, regenerative biology, and stem cell biology. With the knowledge gained from scRNA research, it is now possible to characterize the expression profiles of all cell types with great precision. In functional studies, our picture of the Hydra stem cell biology has changed, and we are in the process of obtaining a clear picture of the homeostasis and properties of the different stem cell populations. Even though Hydra is often compared to plant systems, the new data on germline and regeneration, but also on the dynamics and plasticity of the nervous system, show that Hydra with its simple body plan represents in a nutshell the prototype of an animal with stem cell lineages, whose properties correspond in many ways to Bilateria. This review provides an overview of the four stem cell lineages, the two epithelial lineages that constitute the ectoderm and the endoderm, as well as the multipotent somatic interstitial lineage (MPSC) and the germline stem cell lineage (GSC), also known as the interstitial cells of Hydra.
Collapse
Affiliation(s)
- Thomas W Holstein
- Heidelberg University, Centre for Organismal Studies (COS), Molecular Evolution and Genomics, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Garg N, Štibler UK, Eismann B, Mercker M, Bergheim BG, Linn A, Tuchscherer P, Engel U, Redl S, Marciniak-Czochra A, Holstein TW, Hess MW, Özbek S. Non-muscle myosin II drives critical steps of nematocyst morphogenesis. iScience 2023; 26:106291. [PMID: 36936784 PMCID: PMC10014300 DOI: 10.1016/j.isci.2023.106291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Nematocysts are generated by secretion of proteins into a post-Golgi compartment. They consist of a capsule that elongates into a long tube, which is coiled inside the capsule matrix and expelled during its nano-second discharge deployed for prey capture. The driving force for discharge is an extreme osmotic pressure of 150 bar. The complex processes of tube elongation and invagination under these biomechanical constraints have so far been elusive. Here, we show that a non-muscle myosin II homolog (HyNMII) is essential for nematocyst formation in Hydra. In early nematocysts, HyNMII assembles to a collar around the neck of the protruding tube. HyNMII then facilitates tube outgrowth by compressing it along the longitudinal axis as evidenced by inhibitor treatment and genetic knockdown. In addition, live imaging of a NOWA::NOWA-GFP transgenic line, which re-defined NOWA as a tube component facilitating invagination, allowed us to analyze the impact of HyNMII on tube maturation.
Collapse
Affiliation(s)
- Niharika Garg
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Urška Knez Štibler
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Björn Eismann
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Moritz Mercker
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Bruno Gideon Bergheim
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Anna Linn
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Patrizia Tuchscherer
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ulrike Engel
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Nikon Imaging Center at the University of Heidelberg, Bioquant, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Redl
- Institute of Neuroanatomy, Medical University of Innsbruck, Müllerstrasse 59, 6020 Innsbruck, Austria
- Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Anna Marciniak-Czochra
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Thomas W. Holstein
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Michael W. Hess
- Institute of Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Suat Özbek
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Hyun NP, Olberding JP, De A, Divi S, Liang X, Thomas E, St Pierre R, Steinhardt E, Jorge J, Longo SJ, Cox S, Mendoza E, Sutton GP, Azizi E, Crosby AJ, Bergbreiter S, Wood RJ, Patek SN. Spring and latch dynamics can act as control pathways in ultrafast systems. BIOINSPIRATION & BIOMIMETICS 2023; 18:026002. [PMID: 36595244 DOI: 10.1088/1748-3190/acaa7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Ultrafast movements propelled by springs and released by latches are thought limited to energetic adjustments prior to movement, and seemingly cannot adjust once movement begins. Even so, across the tree of life, ultrafast organisms navigate dynamic environments and generate a range of movements, suggesting unrecognized capabilities for control. We develop a framework of control pathways leveraging the non-linear dynamics of spring-propelled, latch-released systems. We analytically model spring dynamics and develop reduced-parameter models of latch dynamics to quantify how they can be tuned internally or through changing external environments. Using Lagrangian mechanics, we test feedforward and feedback control implementation via spring and latch dynamics. We establish through empirically-informed modeling that ultrafast movement can be controllably varied during latch release and spring propulsion. A deeper understanding of the interconnection between multiple control pathways, and the tunability of each control pathway, in ultrafast biomechanical systems presented here has the potential to expand the capabilities of synthetic ultra-fast systems and provides a new framework to understand the behaviors of fast organisms subject to perturbations and environmental non-idealities.
Collapse
Affiliation(s)
- N P Hyun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - J P Olberding
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - A De
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - S Divi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - X Liang
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - E Thomas
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - R St Pierre
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - E Steinhardt
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - J Jorge
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - S J Longo
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - S Cox
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - E Mendoza
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - G P Sutton
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - E Azizi
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - A J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - S Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - R J Wood
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - S N Patek
- Biology Department, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
6
|
The architecture and operating mechanism of a cnidarian stinging organelle. Nat Commun 2022; 13:3494. [PMID: 35715400 PMCID: PMC9205923 DOI: 10.1038/s41467-022-31090-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
The stinging organelles of jellyfish, sea anemones, and other cnidarians, known as nematocysts, are remarkable cellular weapons used for both predation and defense. Nematocysts consist of a pressurized capsule containing a coiled harpoon-like thread. These structures are in turn built within specialized cells known as nematocytes. When triggered, the capsule explosively discharges, ejecting the coiled thread which punctures the target and rapidly elongates by turning inside out in a process called eversion. Due to the structural complexity of the thread and the extreme speed of discharge, the precise mechanics of nematocyst firing have remained elusive7. Here, using a combination of live and super-resolution imaging, 3D electron microscopy, and genetic perturbations, we define the step-by-step sequence of nematocyst operation in the model sea anemone Nematostella vectensis. This analysis reveals the complex biomechanical transformations underpinning the operating mechanism of nematocysts, one of nature’s most exquisite biological micro-machines. Further, this study will provide insight into the form and function of related cnidarian organelles and serve as a template for the design of bioinspired microdevices. The venomous stinging cells of jellyfish, anemones, and corals contain an organelle, the nematocyst, which explosively discharges a venom-laden thread. Here, the authors describe the nematocyst thread and its sub-structures in the sea anemone N. vectensis, revealing a complexity and sophistication underpinning this cellular weapon.
Collapse
|
7
|
Diverse silk and silk-like proteins derived from terrestrial and marine organisms and their applications. Acta Biomater 2021; 136:56-71. [PMID: 34551332 DOI: 10.1016/j.actbio.2021.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
Organisms develop unique systems in a given environment. In the process of adaptation, they employ materials in a clever way, which has inspired mankind extensively. Understanding the behavior and material properties of living organisms provides a way to emulate these natural systems and engineer various materials. Silk is a material that has been with human for over 5000 years, and the success of mass production of silkworm silk has realized its applications to medical, pharmaceutical, optical, and even electronic fields. Spider silk, which was characterized later, has expanded the application sectors to textile and military materials based on its tough mechanical properties. Because silk proteins are main components of these materials and there are abundant creatures producing silks that have not been studied, the introduction of new silk proteins would be a breakthrough of engineering materials to open innovative industry fields. Therefore, in this review, we present diverse silk and silk-like proteins and how they are utilized with respect to organism's survival. Here, the range of organisms are not constrained to silkworms and spiders but expanded to other insects, and even marine creatures which produce silk-like proteins that are not observed in terrestrial silks. This viewpoint broadening of silk and silk-like proteins would suggest diverse targets of engineering to design promising silk-based materials. STATEMENT OF SIGNIFICANCE: Silk has been developed as a biomedical material due to unique mechanical and chemical properties. For decades, silks from various silkworm and spider species have been intensively studied. More recently, other silk and silk-like proteins with different sequences and structures have been reported, not only limited to terrestrial organisms (honeybee, green lacewing, caddisfly, and ant), but also from marine creatures (mussel, squid, sea anemone, and pearl oyster). Nevertheless, there has hardly been well-organized literature on silks from such organisms. Regarding the relationship among sequence-structure-properties, this review addresses how silks have been utilized with respect to organism's survival. Finally, this information aims to improve the understanding of diverse silk and silk-like proteins which can offer a significant interest to engineering fields.
Collapse
|
8
|
Magarlamov TY, Turbeville JM, Chernyshev AV. Pseudocnidae of ribbon worms (Nemertea): ultrastructure, maturation, and functional morphology. PeerJ 2021; 9:e10912. [PMID: 33643715 PMCID: PMC7897414 DOI: 10.7717/peerj.10912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/16/2021] [Indexed: 11/20/2022] Open
Abstract
The fine structure of mature pseudocnidae of 32 species of nemerteans, representatives of 20 genera, six families, and two classes was investigated with scanning and transmission electron microscopy. Pseudocnidae are composed of four layers (cortex, medulla, precore layer, and core) in most species investigated, but the degree of development and position of each layer can vary between different species. The secretion products comprising immature pseudocnidae segregate into separate layers: a thin envelope, which subsequently separates into the cortex and medulla and an extensive internal layer. We distinguish two pseudocnida types: type I is characterized by a two-layered core and type II by a three-layered core. Type I pseudocnidae are present in archinemertean species, Carinoma mutabilis, and in all pilidiophoran species, except Heteronemertea sp. 5DS; type II pseudocnidae occur in all studied species of Tubulanidae and the basal Heteronemertea sp. 5DS. Based on the structure of the discharged pseudocnidae observed in eleven species of palaeonemerteans and in eight species of pilidiophorans, we distinguish three different mechanisms (1-3) of core extrusion/discharge with the following characteristics and distribution: (1) the outer core layer is everted simultaneously with the tube-like layer and occurs in type I pseudocnidae of most species; (2) the extruded core is formed by both eversion of the outer core layer and medullar layer, and occurs in type I pseudocnidae of Micrura cf. bella; (3) the eversion of the outer core layer begins together with the core rod and core rod lamina and occurs in type II pseudocnidae. Morpho-functional comparison with other extrusomes (cnidae, sagittocysts, rhabdtites, and paracnids) confirm that pseudocnidae are homologous structures that are unique to nemerteans.
Collapse
Affiliation(s)
- Timur Yu Magarlamov
- Far Eastern Branch, Russian Academy of Sciences, A.V. Zhirmunsky National Scientific Center of Marine Biology, Vladivostok, Russia
| | - James M Turbeville
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Alexei V Chernyshev
- Far Eastern Branch, Russian Academy of Sciences, A.V. Zhirmunsky National Scientific Center of Marine Biology, Vladivostok, Russia
| |
Collapse
|
9
|
Farajollahi S, Dennis PB, Crosby MG, Slocik JM, Pelton AT, Hampton CM, Drummy LF, Yang SJ, Silberstein MN, Gupta MK, Naik RR. Disulfide Crosslinked Hydrogels Made From the Hydra Stinging Cell Protein, Minicollagen-1. Front Chem 2020; 7:950. [PMID: 32039158 PMCID: PMC6989532 DOI: 10.3389/fchem.2019.00950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/31/2019] [Indexed: 11/28/2022] Open
Abstract
Minicollagens from cnidarian nematocysts are attractive potential building blocks for the creation of strong, lightweight and tough polymeric materials with the potential for dynamic and reconfigurable crosslinking to modulate functionality. In this study, the Hydra magnipapillata minicollagen-1 isoform was recombinantly expressed in bacteria, and a high throughput purification protocol was developed to generate milligram levels of pure protein without column chromatography. The resulting minicollagen-1 preparation demonstrated spectral properties similar to those observed with collagen and polyproline sequences as well as the ability to self-assemble into oriented fibers and bundles. Photo-crosslinking with Ru(II)( bpy ) 3 2 + was used to create robust hydrogels that were analyzed by mechanical testing. Interestingly, the minicollagen-1 hydrogels could be dissolved with reducing agents, indicating that ruthenium-mediated photo-crosslinking was able to induce disulfide metathesis to create the hydrogels. Together, this work is an important first step in creating minicollagen-based materials whose properties can be manipulated through static and reconfigurable post-translational modifications.
Collapse
Affiliation(s)
- Sanaz Farajollahi
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Patrick B. Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Marquise G. Crosby
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Joseph M. Slocik
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Anthony T. Pelton
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Cheri M. Hampton
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Lawrence F. Drummy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Steven J. Yang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Meredith N. Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Rajesh R. Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| |
Collapse
|
10
|
Krohne G. Hydra nematocysts in the flatworm Microstomum lineare: in search for alterations preceding their disappearance from the new host. Cell Tissue Res 2019; 379:63-71. [PMID: 31848750 DOI: 10.1007/s00441-019-03149-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022]
Abstract
Nematocysts are characteristic organelles of the phylum Cnidaria. The free-living Platyhelminth Microstomum lineare preys on Hydra oligactis and sequesters nematocysts. All nematocyst types become phagocytosed without adherent cytoplasm by intestinal cnidophagocytes. Desmoneme and isorhiza nematocysts disappear within 2 days after ingestion whereas cnidophagocytes containing the venom-loaded stenotele nematocysts migrate out of the intestinal epithelia through the parenchyma to the epidermis. Epidermally localized stenoteles are still able to discharge suggesting that this hydra organelle does preserve its physiological properties. Three to four weeks after ingestion, the majority of stenoteles disappear from M. lineare. To search for alterations of nematocysts that might precede their disappearance, flatworms were stained with acridine orange, a dye that binds to poly-γ-glutamic acid present in hydra nematocysts. The staining properties of all three nematocyst types were indistinguishable during the first 60 min after ingestion of hydra tissue whereas 15 h later, the majority of desmoneme and isorhiza had lost their stainability in striking contrast to stenoteles. In M. lineare inspected 2, 4 and 10 days after feeding, 20-40% of stenoteles had lost their stainability with acridine orange. Non-stained stenoteles had sizes similar to their stained counterparts but some of them were slightly deformed. The presented data indicate that acridine orange staining allows the detection of early alterations of all three ingested nematocyst types preceding their disappearance from M. lineare. Furthermore, they support the notion that the transport of venom-loaded stenoteles to the epidermis provides a strategy of excretion.
Collapse
Affiliation(s)
- Georg Krohne
- Imaging Core Facility Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
11
|
Bentele T, Amadei F, Kimmle E, Veschgini M, Linke P, Sontag-González M, Tennigkeit J, Ho AD, Özbek S, Tanaka M. New Class of Crosslinker-Free Nanofiber Biomaterials from Hydra Nematocyst Proteins. Sci Rep 2019; 9:19116. [PMID: 31836799 PMCID: PMC6910907 DOI: 10.1038/s41598-019-55655-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022] Open
Abstract
Nematocysts, the stinging organelles of cnidarians, have remarkable mechanical properties. Hydra nematocyst capsules undergo volume changes of 50% during their explosive exocytosis and withstand osmotic pressures of beyond 100 bar. Recently, two novel protein components building up the nematocyst capsule wall in Hydra were identified. The cnidarian proline-rich protein 1 (CPP-1) characterized by a "rigid" polyproline motif and the elastic Cnidoin possessing a silk-like domain were shown to be part of the capsule structure via short cysteine-rich domains that spontaneously crosslink the proteins via disulfide bonds. In this study, recombinant Cnidoin and CPP-1 are expressed in E. coli and the elastic modulus of spontaneously crosslinked bulk proteins is compared with that of isolated nematocysts. For the fabrication of uniform protein nanofibers by electrospinning, the preparative conditions are systematically optimized. Both fibers remain stable even after rigorous washing and immersion into bulk water owing to the simultaneous crosslinking of cysteine-rich domains. This makes our nanofibers clearly different from other protein nanofibers that are not stable without chemical crosslinkers. Following the quantitative assessment of mechanical properties, the potential of Cnidoin and CPP-1 nanofibers is examined towards the maintenance of human mesenchymal stem cells.
Collapse
Affiliation(s)
- Theresa Bentele
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany
| | - Federico Amadei
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Esther Kimmle
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Mariam Veschgini
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Philipp Linke
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Mariana Sontag-González
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
- School of Earth and Environmental Sciences, Science Medicine and Health, University of Wollongong, NSW 2522, Wollongong, Australia
| | - Jutta Tennigkeit
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, University of Heidelberg, 69120, Heidelberg, Germany
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan
| | - Suat Özbek
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany.
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan.
| |
Collapse
|
12
|
Zhang R, Jin L, Zhang N, Petridis AK, Eckert T, Scheiner-Bobis G, Bergmann M, Scheidig A, Schauer R, Yan M, Wijesundera SA, Nordén B, Chatterjee BK, Siebert HC. The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is A Role Model for Nanomedical Diagnostic and Therapeutic Tools. Mar Drugs 2019; 17:E469. [PMID: 31409009 PMCID: PMC6722915 DOI: 10.3390/md17080469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Formulas derived from theoretical physics provide important insights about the nematocyst discharge process of Cnidaria (Hydra, jellyfishes, box-jellyfishes and sea-anemones). Our model description of the fastest process in living nature raises and answers questions related to the material properties of the cell- and tubule-walls of nematocysts including their polysialic acid (polySia) dependent target function. Since a number of tumor-cells, especially brain-tumor cells such as neuroblastoma tissues carry the polysaccharide chain polySia in similar concentration as fish eggs or fish skin, it makes sense to use these findings for new diagnostic and therapeutic approaches in the field of nanomedicine. Therefore, the nematocyst discharge process can be considered as a bionic blue-print for future nanomedical devices in cancer diagnostics and therapies. This approach is promising because the physical background of this process can be described in a sufficient way with formulas presented here. Additionally, we discuss biophysical and biochemical experiments which will allow us to define proper boundary conditions in order to support our theoretical model approach. PolySia glycans occur in a similar density on malignant tumor cells than on the cell surfaces of Cnidarian predators and preys. The knowledge of the polySia-dependent initiation of the nematocyst discharge process in an intact nematocyte is an essential prerequisite regarding the further development of target-directed nanomedical devices for diagnostic and therapeutic purposes. The theoretical description as well as the computationally and experimentally derived results about the biophysical and biochemical parameters can contribute to a proper design of anti-tumor drug ejecting vessels which use a stylet-tubule system. Especially, the role of nematogalectins is of interest because these bridging proteins contribute as well as special collagen fibers to the elastic band properties. The basic concepts of the nematocyst discharge process inside the tubule cell walls of nematocysts were studied in jellyfishes and in Hydra which are ideal model organisms. Hydra has already been chosen by Alan Turing in order to figure out how the chemical basis of morphogenesis can be described in a fundamental way. This encouraged us to discuss the action of nematocysts in relation to morphological aspects and material requirements. Using these insights, it is now possible to discuss natural and artificial nematocyst-like vessels with optimized properties for a diagnostic and therapeutic use, e.g., in neurooncology. We show here that crucial physical parameters such as pressure thresholds and elasticity properties during the nematocyst discharge process can be described in a consistent and satisfactory way with an impact on the construction of new nanomedical devices.
Collapse
Affiliation(s)
- Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Li Jin
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Athanasios K Petridis
- Neurochirurgische Klinik, Universität Düsseldorf, Geb. 11.54, Moorenstraße 5, Düsseldorf 40255, Germany
| | - Thomas Eckert
- Institut für Veterinärphysiolgie und-Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- RISCC-Research Institute for Scientific Computing and Consulting, Ludwig-Schunk-Str. 15, 35452 Heuchelheim, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinärphysiolgie und-Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Martin Bergmann
- Institut für Veterinäranatomie, Histologie und Embryologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 98, 35392 Giessen, Germany
| | - Axel Scheidig
- Zoologisches Institut-Strukturbiologie, Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität, Am Botanischen Garten 19, 24118 Kiel, Germany
| | - Roland Schauer
- Biochemisches Institut, Christian-Albrechts Universität Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Samurdhi A Wijesundera
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Bengt Nordén
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1, A P C Road, Kolkata-700009, India
| | - Hans-Christian Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany.
| |
Collapse
|
13
|
Arendt D, Bertucci PY, Achim K, Musser JM. Evolution of neuronal types and families. Curr Opin Neurobiol 2019; 56:144-152. [PMID: 30826503 PMCID: PMC6556553 DOI: 10.1016/j.conb.2019.01.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/12/2022]
Abstract
Solving nervous system evolution requires cross-species comparison of neuronal types. Neuronal types are commonly defined by their specific structure and function. We provide an operational definition of cell types that allows evolutionary comparison. The identity of neuronal types is best reflected by specifying transcription factors. Families of related neuronal types are conserved across large evolutionary distances.
Major questions in the evolution of neurons and nervous systems remain unsolved, such as the origin of the first neuron, the possible convergent evolution of neuronal phenotypes, and the transition from a relatively simple decentralized nerve net to the complex, centralized nervous systems found in modern bilaterian animals. In recent years, comparative single-cell transcriptomics has opened up new research avenues addressing these issues. Here, we review recent conceptual progress toward an evolutionary definition of cell types, and how it facilitates the identification and large-scale comparison of neuronal types and neuron type families from single-cell data — with the family of GABAergic neurons in distinct parts of the vertebrate forebrain as prime example. We also highlight strategies to infer cell type-specific innovation, so-called apomeres, from single-cell data.
Collapse
Affiliation(s)
- Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012, Heidelberg, Germany.
| | - Paola Yanina Bertucci
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012, Heidelberg, Germany
| | - Kaia Achim
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012, Heidelberg, Germany
| | - Jacob M Musser
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012, Heidelberg, Germany
| |
Collapse
|
14
|
Lommel M, Strompen J, Hellewell AL, Balasubramanian GP, Christofidou ED, Thomson AR, Boyle AL, Woolfson DN, Puglisi K, Hartl M, Holstein TW, Adams JC, Özbek S. Hydra Mesoglea Proteome Identifies Thrombospondin as a Conserved Component Active in Head Organizer Restriction. Sci Rep 2018; 8:11753. [PMID: 30082916 PMCID: PMC6079037 DOI: 10.1038/s41598-018-30035-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Thrombospondins (TSPs) are multidomain glycoproteins with complex matricellular functions in tissue homeostasis and remodeling. We describe a novel role of TSP as a Wnt signaling target in the basal eumetazoan Hydra. Proteome analysis identified Hydra magnipapillata TSP (HmTSP) as a major component of the cnidarian mesoglea. In general, the domain organization of cnidarian TSPs is related to the pentameric TSPs of bilaterians, and in phylogenetic analyses cnidarian TSPs formed a separate clade of high sequence diversity. HmTSP expression in polyps was restricted to the hypostomal tip and tentacle bases that harbor Wnt-regulated organizer tissues. In the hypostome, HmTSP- and Wnt3-expressing cells were identical or in close vicinity to each other, and regions of ectopic tentacle formation induced by pharmacological β-Catenin activation (Alsterpaullone) corresponded to foci of HmTSP expression. Chromatin immunoprecipitation (ChIP) confirmed binding of Hydra TCF to conserved elements in the HmTSP promotor region. Accordingly, β-Catenin knockdown by siRNAs reduced normal HmTSP expression at the head organizer. In contrast, knockdown of HmTSP expression led to increased numbers of ectopic organizers in Alsterpaullone-treated animals, indicating a negative regulatory function. Our data suggest an unexpected role for HmTSP as a feedback inhibitor of Wnt signaling during Hydra body axis patterning and maintenance.
Collapse
Affiliation(s)
- Mark Lommel
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jennifer Strompen
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Andrew L Hellewell
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Gnana Prakash Balasubramanian
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.,G200 Division of Applied Bioinformatics, German Cancer Research Institute (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Elena D Christofidou
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Andrew R Thomson
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.,School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| | - Aimee L Boyle
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.,Leiden Institute of Chemistry, Leiden University, POB 9502, NL-2300, RA Leiden, Netherlands
| | - Derek N Woolfson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK
| | - Kane Puglisi
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Thomas W Holstein
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Suat Özbek
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Organelle survival in a foreign organism: Hydra nematocysts in the flatworm Microstomum lineare. Eur J Cell Biol 2018; 97:289-299. [DOI: 10.1016/j.ejcb.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 01/21/2023] Open
|
16
|
Remigante A, Costa R, Morabito R, La Spada G, Marino A, Dossena S. Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings. Toxins (Basel) 2018; 10:toxins10040133. [PMID: 29570625 PMCID: PMC5923299 DOI: 10.3390/toxins10040133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023] Open
Abstract
Cnidaria include the most venomous animals of the world. Among Cnidaria, Scyphozoa (true jellyfish) are ubiquitous, abundant, and often come into accidental contact with humans and, therefore, represent a threat for public health and safety. The venom of Scyphozoa is a complex mixture of bioactive substances—including thermolabile enzymes such as phospholipases, metalloproteinases, and, possibly, pore-forming proteins—and is only partially characterized. Scyphozoan stings may lead to local and systemic reactions via toxic and immunological mechanisms; some of these reactions may represent a medical emergency. However, the adoption of safe and efficacious first aid measures for jellyfish stings is hampered by the diffusion of folk remedies, anecdotal reports, and lack of consensus in the scientific literature. Species-specific differences may hinder the identification of treatments that work for all stings. However, rinsing the sting site with vinegar (5% acetic acid) and the application of heat (hot pack/immersion in hot water) or lidocaine appear to be substantiated by evidence. Controlled clinical trials or reliable models of envenomation are warranted to confirm the efficacy and safety of these approaches and identify possible species-specific exceptions. Knowledge of the precise composition of Scyphozoa venom may open the way to molecule-oriented therapies in the future.
Collapse
Affiliation(s)
- Alessia Remigante
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy.
| | - Roberta Costa
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy.
| | - Giuseppa La Spada
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy.
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy.
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| |
Collapse
|
17
|
Cavalier-Smith T. Origin of animal multicellularity: precursors, causes, consequences-the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0476. [PMID: 27994119 PMCID: PMC5182410 DOI: 10.1098/rstb.2015.0476] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
Evolving multicellularity is easy, especially in phototrophs and osmotrophs whose multicells feed like unicells. Evolving animals was much harder and unique; probably only one pathway via benthic ‘zoophytes’ with pelagic ciliated larvae allowed trophic continuity from phagocytic protozoa to gut-endowed animals. Choanoflagellate protozoa produced sponges. Converting sponge flask cells mediating larval settling to synaptically controlled nematocysts arguably made Cnidaria. I replace Haeckel's gastraea theory by a sponge/coelenterate/bilaterian pathway: Placozoa, hydrozoan diploblasty and ctenophores were secondary; stem anthozoan developmental mutations arguably independently generated coelomate bilateria and ctenophores. I emphasize animal origin's conceptual aspects (selective, developmental) related to feeding modes, cell structure, phylogeny of related protozoa, sequence evidence, ecology and palaeontology. Epithelia and connective tissue could evolve only by compensating for dramatically lower feeding efficiency that differentiation into non-choanocytes entails. Consequentially, larger bodies enabled filtering more water for bacterial food and harbouring photosynthetic bacteria, together adding more food than cell differentiation sacrificed. A hypothetical presponge of sessile triploblastic sheets (connective tissue sandwiched between two choanocyte epithelia) evolved oogamy through selection for larger dispersive ciliated larvae to accelerate benthic trophic competence and overgrowing protozoan competitors. Extinct Vendozoa might be elaborations of this organismal grade with choanocyte-bearing epithelia, before poriferan water channels and cnidarian gut/nematocysts/synapses evolved. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’.
Collapse
|
18
|
Park S, Piriatinskiy G, Zeevi D, Ben-David J, Yossifon G, Shavit U, Lotan T. The nematocyst's sting is driven by the tubule moving front. J R Soc Interface 2017; 14:rsif.2016.0917. [PMID: 28250103 DOI: 10.1098/rsif.2016.0917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 12/26/2022] Open
Abstract
The nematocyst is the explosive injection system of the phylum Cnidaria, and is one of the fastest delivery systems found in Nature. Exploring its injection mechanism is key for understanding predator-prey interactions and protection against jellyfish stinging. Here we analyse the injection of jellyfish nematocysts and ask how the build-up of the poly-γ-glutamate (pγGlu) osmotic potential inside the nematocyst drives its discharge. To control the osmotic potential, we used a two-channel microfluidic system to direct the elongating nematocyst tubule through oil, where no osmotic potential can develop, while keeping the nematocyst capsule in water at all times. In addition, the flow inside the tubule and the pγGlu concentration profiles were calculated by applying a one-dimensional mathematical model. We found that tubule elongation through oil is orders of magnitude slower than through water and that the injection rate of the nematocyst content is reduced. These results imply that the capsule's osmotic potential is not sufficient to drive the tubule beyond the initial stage. Our proposed model shows that the tubule is pulled by the high osmotic potential that develops at the tubule moving front. This new understanding is vital for future development of nematocyst-based systems such as osmotic nanotubes and transdermal drug delivery.
Collapse
Affiliation(s)
- Sinwook Park
- Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel
| | - Gadi Piriatinskiy
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Dan Zeevi
- Faculty of Civil and Environmental Engineering, Technion, Haifa 32000, Israel
| | - Jonathan Ben-David
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel
| | - Uri Shavit
- Faculty of Civil and Environmental Engineering, Technion, Haifa 32000, Israel
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| |
Collapse
|
19
|
Park S, Capelin D, Piriatinskiy G, Lotan T, Yossifon G. Dielectrophoretic characterization and isolation of jellyfish stinging capsules. Electrophoresis 2017; 38:1996-2003. [PMID: 28613387 DOI: 10.1002/elps.201700072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023]
Abstract
Jellyfish stinging capsules known as nematocysts are explosive, natural-injection systems with high potential as a natural drug-delivery system. These organelles consist of a capsule containing a highly folded thin needle-like tubule and a matrix highly concentrated with charged constituents that enable the tubule to fire and penetrate a target. For the purpose of using these nematocysts as drug delivery system it is first required to purify subpopulations from heterogeneous population of capsules and to investigate each subpopulation's distinct function and characteristics. Here, the nematocysts' dielectric properties were experimentally investigated using dielectrophoretic and electrorotational spectra with best fits derived from theoretical models. The dielectric characterization adds to our understanding of the nematocysts' structure and function and is necessary for the dielectrophoretic isolation and manipulation of populations. As expected, the effect of monovalent and divalent exchange cations resulted in higher inner conductivity for the NaCl treated capsules; this result stands in agreement with their relative higher osmotic pressure. In addition, an efficient dielectrophoretic isolation of different nematocyst subpopulations was demonstrated, paving the way to an understanding of nematocysts' functional diversity and the development of an efficient drug delivery platform.
Collapse
Affiliation(s)
- Sinwook Park
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Israel
| | - Daniel Capelin
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Israel
| | - Gadi Piriatinskiy
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Israel
| |
Collapse
|
20
|
Gavelis GS, Wakeman KC, Tillmann U, Ripken C, Mitarai S, Herranz M, Özbek S, Holstein T, Keeling PJ, Leander BS. Microbial arms race: Ballistic "nematocysts" in dinoflagellates represent a new extreme in organelle complexity. SCIENCE ADVANCES 2017; 3:e1602552. [PMID: 28435864 PMCID: PMC5375639 DOI: 10.1126/sciadv.1602552] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/10/2017] [Indexed: 05/07/2023]
Abstract
We examine the origin of harpoon-like secretory organelles (nematocysts) in dinoflagellate protists. These ballistic organelles have been hypothesized to be homologous to similarly complex structures in animals (cnidarians); but we show, using structural, functional, and phylogenomic data, that nematocysts evolved independently in both lineages. We also recorded the first high-resolution videos of nematocyst discharge in dinoflagellates. Unexpectedly, our data suggest that different types of dinoflagellate nematocysts use two fundamentally different types of ballistic mechanisms: one type relies on a single pressurized capsule for propulsion, whereas the other type launches 11 to 15 projectiles from an arrangement similar to a Gatling gun. Despite their radical structural differences, these nematocysts share a single origin within dinoflagellates and both potentially use a contraction-based mechanism to generate ballistic force. The diversity of traits in dinoflagellate nematocysts demonstrates a stepwise route by which simple secretory structures diversified to yield elaborate subcellular weaponry.
Collapse
Affiliation(s)
- Gregory S. Gavelis
- Department of Botany, University of British Columbia, Vancouver, Canada
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Corresponding author.
| | - Kevin C. Wakeman
- Office of International Affairs, Hokkaido University, Kita 10, Nishi 8, Sapporo 060-0810, Japan
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Urban Tillmann
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Sapporo 060-0810, Japan
| | - Christina Ripken
- Marine Biophysics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Maria Herranz
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Suat Özbek
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Holstein
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Brian S. Leander
- Department of Botany, University of British Columbia, Vancouver, Canada
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Bosch TCG, Klimovich A, Domazet-Lošo T, Gründer S, Holstein TW, Jékely G, Miller DJ, Murillo-Rincon AP, Rentzsch F, Richards GS, Schröder K, Technau U, Yuste R. Back to the Basics: Cnidarians Start to Fire. Trends Neurosci 2016; 40:92-105. [PMID: 28041633 DOI: 10.1016/j.tins.2016.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022]
Abstract
The nervous systems of cnidarians, pre-bilaterian animals that diverged close to the base of the metazoan radiation, are structurally simple and thus have great potential to reveal fundamental principles of neural circuits. Unfortunately, cnidarians have thus far been relatively intractable to electrophysiological and genetic techniques and consequently have been largely passed over by neurobiologists. However, recent advances in molecular and imaging methods are fueling a renaissance of interest in and research into cnidarians nervous systems. Here, we review current knowledge on the nervous systems of cnidarian species and propose that researchers should seize this opportunity and undertake the study of members of this phylum as strategic experimental systems with great basic and translational relevance for neuroscience.
Collapse
Affiliation(s)
| | | | - Tomislav Domazet-Lošo
- Ruđer Bošković Institute, Zagreb, Croatia; Catholic University of Croatia, Zagreb, Croatia
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Germany
| | | | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, Townsville, Australia
| | | | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Gemma S Richards
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway; University of Queensland, Brisbane, Australia
| | | | | | - Rafael Yuste
- Neurotechnology Center, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Jékely G, Keijzer F, Godfrey-Smith P. An option space for early neural evolution. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0181. [PMID: 26554049 DOI: 10.1098/rstb.2015.0181] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input-output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Fred Keijzer
- Department of Theoretical Philosophy, University of Groningen, Oude Boteringestraat 52, Groningen 9712 GL, The Netherlands
| | - Peter Godfrey-Smith
- Philosophy Program, The Graduate Center, City University of New York, New York, NY 10016, USA History and Philosophy of Science Unit, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
23
|
The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials. PLoS One 2016; 11:e0159128. [PMID: 27415783 PMCID: PMC4944945 DOI: 10.1371/journal.pone.0159128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/28/2016] [Indexed: 01/05/2023] Open
Abstract
In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of biological materials with diverse morphologies. The SilkSlider predictor software developed here is available at https://github.com/wwood/SilkSlider.
Collapse
|
24
|
Minicollagen cysteine-rich domains encode distinct modes of polymerization to form stable nematocyst capsules. Sci Rep 2016; 6:25709. [PMID: 27166560 PMCID: PMC4863159 DOI: 10.1038/srep25709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/21/2016] [Indexed: 12/04/2022] Open
Abstract
The stinging capsules of cnidarians, nematocysts, function as harpoon-like organelles with unusual biomechanical properties. The nanosecond discharge of the nematocyst requires a dense protein network of the capsule structure withstanding an internal pressure of up to 150 bar. Main components of the capsule are short collagens, so-called minicollagens, that form extended polymers by disulfide reshuffling of their cysteine-rich domains (CRDs). Although CRDs have identical cysteine patterns, they exhibit different structures and disulfide connectivity at minicollagen N and C-termini. We show that the structurally divergent CRDs have different cross-linking potentials in vitro and in vivo. While the C-CRD can participate in several simultaneous intermolecular disulfides and functions as a cystine knot after minicollagen synthesis, the N-CRD is monovalent. Our combined experimental and computational analyses reveal the cysteines in the C-CRD fold to exhibit a higher structural propensity for disulfide bonding and a faster kinetics of polymerization. During nematocyst maturation, the highly reactive C-CRD is instrumental in efficient cross-linking of minicollagens to form pressure resistant capsules. The higher ratio of C-CRD folding types evidenced in the medusozoan lineage might have fostered the evolution of novel, predatory nematocyst types in cnidarians with a free-swimming medusa stage.
Collapse
|
25
|
Baumann F, Bauer MS, Milles LF, Alexandrovich A, Gaub HE, Pippig DA. Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy. NATURE NANOTECHNOLOGY 2016; 11:89-94. [PMID: 26457965 DOI: 10.1038/nnano.2015.231] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data. Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool for a range of single-molecule studies.
Collapse
Affiliation(s)
- Fabian Baumann
- Center for Nanoscience and Department of Physics, Ludwig Maximilians University of Munich, Amalienstraße 54, Munich 80799, Germany
| | - Magnus S Bauer
- Center for Nanoscience and Department of Physics, Ludwig Maximilians University of Munich, Amalienstraße 54, Munich 80799, Germany
| | - Lukas F Milles
- Center for Nanoscience and Department of Physics, Ludwig Maximilians University of Munich, Amalienstraße 54, Munich 80799, Germany
| | - Alexander Alexandrovich
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, New Hunt's House, King's College London, London SE1 1UL, UK
| | - Hermann E Gaub
- Center for Nanoscience and Department of Physics, Ludwig Maximilians University of Munich, Amalienstraße 54, Munich 80799, Germany
| | - Diana A Pippig
- Center for Nanoscience and Department of Physics, Ludwig Maximilians University of Munich, Amalienstraße 54, Munich 80799, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University of Munich, Butenandtstraße 5-13, Munich 81377, Germany
| |
Collapse
|
26
|
Parracho T, Morais Z. Catostylus tagi: partial rDNA sequencing and characterisation of nematocyte structures using two improvements in jellyfish sample preparation. J Venom Anim Toxins Incl Trop Dis 2015; 21:40. [PMID: 26445575 PMCID: PMC4595111 DOI: 10.1186/s40409-015-0037-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND More than 200 Scyphozoa species have been described, but few have been properly studied regarding their chemical and genetic characteristics. Catostylus tagi, an edible Scyphozoa and the sole European Catostylidae, occurs in summer at Tagus and Sado estuaries. Neither a systematic comparison between the two Catostylus communities nor a chemical approach on their nematocytes had been carried out yet. METHODS In order to achieve these purposes, optimisation of DNA extraction and of histochemical staining procedures were developed. Catostylus specimens from Tagus and Sado estuaries were compared by ribosomal 18S, 28S, and ITS1 partial sequencing. The morphochemistry of nematocytes was studied by optical and electronic microscopy. RESULTS Macroscopic and molecular results indicated that both communities belong to the same species, C. tagi. The hematoxylin and eosin staining allowed the visualisation of nematocyst genesis and indicated a basic character for the macromolecules on the shaft of euryteles and on the tubule of isorhizae and birhopaloids. By Masson's trichrome procedure, the basic properties of the tubules were confirmed and a collagenous profile for the toxins was suggested. Results of the alcian blue staining showed that the outer membrane of nematocyte may consist of macromolecules with acidic polysaccharides, consistent with NOWA and nematogalectin glycoproteins detected in Hydra, but also with poly-gamma-glutamate complex, chitin-like polysaccharides and hyaluronic acids. Through the von Kossa assays, calcium was detected; its position suggested interactions with polysaccharides of the membrane, with proteins of the contractile system or with both. CONCLUSIONS The optimisation of sample preparation for DNA extraction may facilitate further studies on little known jellyfish species. The improvement of the smear procedure simplified the use of stained reactions in zooplankton. Moreover, it was shown that good slide images might be acquired manually. The development of specific reactions, with traditional dyes and others, can give important contributions to clarify the chemical nature of the components of nematocytes. The characterisation of nematocyst toxins by staining tests is a goal to achieve.
Collapse
Affiliation(s)
- Tiago Parracho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz Cooperativa de Ensino Superior, Quinta da Granja, Monte de Caparica 2829-511 Caparica, Portugal
| | - Zilda Morais
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz Cooperativa de Ensino Superior, Quinta da Granja, Monte de Caparica 2829-511 Caparica, Portugal
| |
Collapse
|
27
|
Chang EP, Evans JS. Pif97, a von Willebrand and Peritrophin Biomineralization Protein, Organizes Mineral Nanoparticles and Creates Intracrystalline Nanochambers. Biochemistry 2015; 54:5348-55. [DOI: 10.1021/acs.biochem.5b00842] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eric P. Chang
- Laboratory for Chemical Physics,
Division of Basic Sciences and Center for Skeletal Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| | - John Spencer Evans
- Laboratory for Chemical Physics,
Division of Basic Sciences and Center for Skeletal Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| |
Collapse
|