1
|
Li R, Dai X, Zheng J, Larsen RS, Qi Y, Zhang X, Vizueta J, Boomsma JJ, Liu W, Zhang G. Juvenile hormone as a key regulator for asymmetric caste differentiation in ants. Proc Natl Acad Sci U S A 2024; 121:e2406999121. [PMID: 39495909 PMCID: PMC11573667 DOI: 10.1073/pnas.2406999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/28/2024] [Indexed: 11/06/2024] Open
Abstract
Caste differentiation involves many functional traits that diverge during larval growth and metamorphosis to produce adults irreversibly adapted to reproductive division of labor. Investigating developmental differentiation is important for general biological understanding and has increasingly been explored for social phenotypes that diverge in parallel from similar genotypes. Here, we use Monomorium pharaonis ants to investigate the extent to which canalized worker development can be shifted toward gyne (virgin-queen) phenotypes by juvenile hormone (JH) treatment. We show that excess JH can activate gyne-biased development in workers so that wing-buds, ocelli, antennal and genital imaginal discs, flight muscles, and gyne-like fat bodies and brains emerge after pupation. However, ovary development remained unresponsive to JH treatment, indicating that JH-sensitive germline sequestration happens well before somatic differentiation. Our findings reveal important qualitative restrictions in the extent to which JH treatment can redirect larval development and that these constraints are independent of body size. Our findings corroborate that JH is a key hormone for inducing caste differentiation but show that this process can be asymmetric for higher colony-level germline versus somatic caste differentiation in superorganisms as defined a century ago by Wheeler. We quantified gene expression changes in response to JH treatment throughout development and identified a set of JH-sensitive genes responsible for the emergence of gyne-like somatic traits. Our study suggests that the gonadotropic role of JH in ovary maturation has shifted from the individual level in solitary insects to the colony level in an evolutionary-derived and highly polygynous superorganism like the pharaoh ant.
Collapse
Affiliation(s)
- Ruyan Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xueqin Dai
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Jixuan Zheng
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rasmus Stenbak Larsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yanmei Qi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xiafang Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Joel Vizueta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Weiwei Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojie Zhang
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Villum Center for Biodiversity Genomics, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
2
|
Frank DD, Kronauer DJC. The Budding Neuroscience of Ant Social Behavior. Annu Rev Neurosci 2024; 47:167-185. [PMID: 38603564 DOI: 10.1146/annurev-neuro-083023-102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Ant physiology has been fashioned by 100 million years of social evolution. Ants perform many sophisticated social and collective behaviors yet possess nervous systems similar in schematic and scale to that of the fruit fly Drosophila melanogaster, a popular solitary model organism. Ants are thus attractive complementary subjects to investigate adaptations pertaining to complex social behaviors that are absent in flies. Despite research interest in ant behavior and the neurobiological foundations of sociality more broadly, our understanding of the ant nervous system is incomplete. Recent technical advances have enabled cutting-edge investigations of the nervous system in a fashion that is less dependent on model choice, opening the door for mechanistic social insect neuroscience. In this review, we revisit important aspects of what is known about the ant nervous system and behavior, and we look forward to how functional circuit neuroscience in ants will help us understand what distinguishes solitary animals from highly social ones.
Collapse
Affiliation(s)
- Dominic D Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA; ,
| | - Daniel J C Kronauer
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
3
|
Zhang X, Xie N, Ding G, Ning D, Dai W, Xiong Z, Zhong W, Zuo D, Zhao J, Zhang P, Liu C, Li Q, Ran H, Liu W, Zhang G. An evolutionarily conserved pathway mediated by neuroparsin-A regulates reproductive plasticity in ants. PLoS Biol 2024; 22:e3002763. [PMID: 39133741 PMCID: PMC11398701 DOI: 10.1371/journal.pbio.3002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/13/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024] Open
Abstract
Phenotypic plasticity displayed by an animal in response to different environmental conditions is supposedly crucial for its survival and reproduction. The female adults of some ant lineages display phenotypic plasticity related to reproductive role. In pharaoh ant queens, insemination induces substantial physiological/behavioral changes and implicates remarkable gene regulatory network (GRN) shift in the brain. Here, we report a neuropeptide neuroparsin A (NPA) showing a conserved expression pattern associated with reproductive activity across ant species. Knock-down of NPA in unmated queen enhances ovary activity, whereas injection of NPA peptide in fertilized queen suppresses ovary activity. We found that NPA mainly affected the downstream gene JHBP in the ovary, which is positively regulated by NPA and suppression of which induces elevated ovary activity, and shadow which is negatively regulated by NPA. Furthermore, we show that NPA was also employed into the brain-ovary axis in regulating the worker reproductive changes in other distantly related species, such as Harpegnathos venator ants.
Collapse
Affiliation(s)
- Xiafang Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Nianxia Xie
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Wuhan, China
| | - Guo Ding
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Ning
- College of Agriculture and Biotechnology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | | | | | - Wenjiang Zhong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dashuang Zuo
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jie Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pei Zhang
- BGI Research, Wuhan, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Chengyuan Liu
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
| | - Qiye Li
- BGI Research, Wuhan, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Hao Ran
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guojie Zhang
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
4
|
Negroni MA, LeBoeuf AC. Social administration of juvenile hormone to larvae increases body size and nutritional needs for pupation. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231471. [PMID: 38126067 PMCID: PMC10731321 DOI: 10.1098/rsos.231471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Social insects often display extreme variation in body size and morphology within the same colony. In many species, adult morphology is socially regulated by workers during larval development. While larval nutrition may play a role in this regulation, it is often difficult to identify precisely what larvae receive from rearing workers, especially when larvae are fed through social regurgitation. Across insects, juvenile hormone is a major regulator of development. In the ant Camponotus floridanus, this hormone is present in the socially regurgitated fluid of workers. We investigated the role the social transfer of juvenile hormone in the social regulation of development. To do this, we administered an artificial regurgitate to larvae through a newly developed handfeeding method that was or was not supplemented with juvenile hormone. Orally administered juvenile hormone increased the nutritional needs of larvae, allowing them to reach a larger size at pupation. Instead of causing them to grow faster, the juvenile hormone treatment extended larval developmental time, allowing them to accumulate resources over a longer period. Handfeeding ant larvae with juvenile hormone resulted in larger adult workers after metamorphosis, suggesting a role for socially transferred juvenile hormone in the colony-level regulation of worker size over colony maturation.
Collapse
Affiliation(s)
- Matteo A. Negroni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Adria C. LeBoeuf
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
5
|
Hou L, Wang N, Sun T, Wang X. Neuropeptide regulations on behavioral plasticity in social insects. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101119. [PMID: 37741615 DOI: 10.1016/j.cois.2023.101119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Social insects demonstrate remarkable behavioral flexibility in response to complex external and social environments. One of the most striking examples of this adaptability is the context-dependent division of labor among workers of bees and ants. Neuropeptides, the brain's most diverse group of messenger molecules, play an essential role in modulating this phenotypic plasticity related to labor division in social insects. Integrated omics research and mass spectrometry imaging technology have greatly accelerated the identification and spatiotemporal analysis of neuropeptides. Moreover, key roles of several neuropeptides in age- and caste-dependent behavioral plasticity have been uncovered. This review summarizes recent advances in the characterization, expression, distribution, and functions of neuropeptides in controlling behavioral plasticity in social insects, particularly bees and ants. The article concludes with a discussion of future directions and challenges in understanding the regulation of social behavior by neuropeptides.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Nanying Wang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Tianle Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
6
|
Chang Y, Yang B, Zhang Y, Dong C, Liu L, Zhao X, Wang G. Identification of sex-biased and neurodevelopment genes via brain transcriptome in Ostrinia furnacalis. Front Physiol 2022; 13:953538. [PMID: 36003649 PMCID: PMC9393524 DOI: 10.3389/fphys.2022.953538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Insect brains play important roles in the regulation of sex-biased behaviors such as mating and oviposition. The neural structure and function of brain differences between males and females have been identified, in which the antenna lobes (AL) showed the most discrepancy, however, the whole repertoire of the genes expressed in the brains and the molecular mechanism of neural signaling and structural development are still unclear. In this study, high-throughput transcriptome analysis of male and female brains was carried on in the Asia corn borer, Ostrinia furnacalis, and a total of 39.23 Gb data and 34,092 unigenes were obtained. Among them, 276 genes displayed sex-biased expression by DEG analysis, of which 125 genes were highly expressed in the males and 151 genes were highly expressed in the females. Besides, by homology analysis against genes that have been confirmed to be related to brain neurodevelopment, a total of 24 candidate genes were identified in O. furnacalis. In addition, to further screen the core genes that may be important for sex-biased nerve signaling and neurodevelopment, protein-protein interaction networks were constructed for the sex-biased genes and neurodevelopment genes. We identified 10 (Mhc, Mlc1, Mlc2, Prm, Mf, wupA, TpnC25D, fln, l(2)efl, and Act5C), 11 (PPO2, GNBP3, Spn77Ba, Ppn, yellow-d2, PGRP-LB, PGRP-SD, PGRP-SC2, Hml, Cg25C, and vkg) and 8 (dac, wg, hh, ci, run, Lim1, Rbp9, and Bx) core hub genes that may be related to brain neural development from male-biased, female-biased, and neurodevelopment gene groups. Our results provide a reference for further analysis of the dimorphism of male and female brain structures in agricultural pests.
Collapse
Affiliation(s)
- Yajun Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guirong Wang, ; Bin Yang,
| | - Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Chenxi Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xincheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guirong Wang, ; Bin Yang,
| |
Collapse
|
7
|
Santos PKF, Galbraith DA, Starkey J, Amsalem E. The effect of the brood and the queen on early gene expression in bumble bee workers' brains. Sci Rep 2022; 12:3018. [PMID: 35194064 PMCID: PMC8863840 DOI: 10.1038/s41598-022-06715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/04/2022] [Indexed: 11/12/2022] Open
Abstract
Worker reproduction in social insects is often regulated by the queen, but can be regulated by the brood and nestmates, who may use different mechanisms to induce the same outcomes in subordinates. Analysis of brain gene expression patterns in bumble bee workers (Bombus impatiens) in response to the presence of the queen, the brood, both or neither, identified 18 differentially expressed genes, 17 of them are regulated by the queen and none are regulated by the brood. Overall, brain gene expression differences in workers were driven by the queen's presence, despite recent studies showing that brood reduces worker egg laying and provides context to the queen pheromones. The queen affected important regulators of reproduction and brood care across insects, such as neuroparsin and vitellogenin, and a comparison with similar datasets in the honey bee and the clonal raider ant revealed that neuroparsin is differentially expressed in all species. These data emphasize the prominent role of the queen in regulating worker physiology and behavior. Genes that serve as key regulators of workers' reproduction are likely to play an important role in the evolution of sociality.
Collapse
Affiliation(s)
- Priscila K F Santos
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| | - David A Galbraith
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jesse Starkey
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Bolder MF, Jung K, Stern M. Seasonal variations of serotonin in the visual system of an ant revealed by immunofluorescence and a machine learning approach. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210932. [PMID: 35154789 PMCID: PMC8825996 DOI: 10.1098/rsos.210932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Hibernation, as an adaptation to seasonal environmental changes in temperate or boreal regions, has profound effects on mammalian brains. Social insects of temperate regions hibernate as well, but despite abundant knowledge on structural and functional plasticity in insect brains, the question of how seasonal activity variations affect insect central nervous systems has not yet been thoroughly addressed. Here, we studied potential variations of serotonin-immunoreactivity in visual information processing centres in the brain of the long-lived ant species Lasius niger. Quantitative immunofluorescence analysis revealed stronger serotonergic signals in the lamina and medulla of the optic lobes of wild or active laboratory workers than in hibernating animals. Instead of statistical inference by testing, differentiability of seasonal serotonin-immunoreactivity was confirmed by a machine learning analysis using convolutional artificial neuronal networks (ANNs) with the digital immunofluorescence images as input information. Machine learning models revealed additional differences in the third visual processing centre, the lobula. We further investigated these results by gradient-weighted class activation mapping. We conclude that seasonal activity variations are represented in the ant brain, and that machine learning by ANNs can contribute to the discovery of such variations.
Collapse
Affiliation(s)
- Maximilian F. Bolder
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Stern
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
9
|
Sieriebriennikov B, Reinberg D, Desplan C. A molecular toolkit for superorganisms. Trends Genet 2021; 37:846-859. [PMID: 34116864 PMCID: PMC8355152 DOI: 10.1016/j.tig.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Social insects, such as ants, bees, wasps, and termites, draw biologists' attention due to their distinctive lifestyles. As experimental systems, they provide unique opportunities to study organismal differentiation, division of labor, longevity, and the evolution of development. Ants are particularly attractive because several ant species can be propagated in the laboratory. However, the same lifestyle that makes social insects interesting also hampers the use of molecular genetic techniques. Here, we summarize the efforts of the ant research community to surmount these hurdles and obtain novel mechanistic insight into the biology of social insects. We review current approaches and propose novel ones involving genomics, transcriptomics, chromatin and DNA methylation profiling, RNA interference (RNAi), and genome editing in ants and discuss future experimental strategies.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
10
|
Cardoso-Júnior CAM, Yagound B, Ronai I, Remnant EJ, Hartfelder K, Oldroyd BP. DNA methylation is not a driver of gene expression reprogramming in young honey bee workers. Mol Ecol 2021; 30:4804-4818. [PMID: 34322926 DOI: 10.1111/mec.16098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022]
Abstract
The presence of DNA methylation marks within genic intervals, also called gene body methylation, is an evolutionarily-conserved epigenetic hallmark of animal and plant methylomes. In social insects, gene body methylation is thought to contribute to behavioural plasticity, for example between foragers and nurse workers, by modulating gene expression. However, recent studies have suggested that the majority of DNA methylation is sequence-specific, and therefore cannot act as a flexible mediator between environmental cues and gene expression. To address this paradox, we examined whole-genome methylation patterns in the brains and ovaries of young honey bee workers that had been subjected to divergent social contexts: the presence or absence of the queen. Although these social contexts are known to bring about extreme changes in behavioral and reproductive traits through differential gene expression, we found no significant differences between the methylomes of workers from queenright and queenless colonies. In contrast, thousands of regions were differentially methylated between colonies, and these differences were not associated with differential gene expression in the subset of genes examined. Methylation patterns were highly similar between brain and ovary tissues and only differed in nine regions. These results strongly indicate that DNA methylation is not a driver of differential gene expression between tissues or behavioral morphs. Finally, despite the lack of difference in methylation patterns, queen presence affected the expression of all four DNA methyltransferase genes, suggesting that these enzymes have roles beyond DNA methylation. Therefore, the functional role of DNA methylation in social insect genomes remains an open question.
Collapse
Affiliation(s)
- Carlos A M Cardoso-Júnior
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil.,Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Boris Yagound
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Isobel Ronai
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | - Benjamin P Oldroyd
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Andrade-Lotero E, Goldstone RL. Self-organized division of cognitive labor. PLoS One 2021; 16:e0254532. [PMID: 34280216 PMCID: PMC8289079 DOI: 10.1371/journal.pone.0254532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Often members of a group benefit from dividing the group’s task into separate components, where each member specializes their role so as to accomplish only one of the components. While this division of labor phenomenon has been observed with respect to both manual and cognitive labor, there is no clear understanding of the cognitive mechanisms allowing for its emergence, especially when there are multiple divisions possible and communication is limited. Indeed, maximization of expected utility often does not differentiate between alternative ways in which individuals could divide labor. We developed an iterative two-person game in which there are multiple ways of dividing labor, but in which it is not possible to explicitly negotiate a division. We implemented the game both as a human experimental task and as a computational model. Our results show that the majority of human dyads can finish the game with an efficient division of labor. Moreover, we fitted our computational model to the behavioral data, which allowed us to explain how the perceived similarity between a player’s actions and the task’s focal points guided the players’ choices from one round to the other, thus bridging the group dynamics and its underlying cognitive process. Potential applications of this model outside cognitive science include the improvement of cooperation in human groups, multi-agent systems, as well as human-robot collaboration.
Collapse
Affiliation(s)
- Edgar Andrade-Lotero
- School of Engineering, Science and Technology, Universidad del Rosario, Bogotá, Colombia
- * E-mail:
| | - Robert L. Goldstone
- Department of Psychological and Brain Sciences and Program in Cognitive Science, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
12
|
Fetter-Pruneda I, Hart T, Ulrich Y, Gal A, Oxley PR, Olivos-Cisneros L, Ebert MS, Kazmi MA, Garrison JL, Bargmann CI, Kronauer DJC. An oxytocin/vasopressin-related neuropeptide modulates social foraging behavior in the clonal raider ant. PLoS Biol 2021; 19:e3001305. [PMID: 34191794 PMCID: PMC8244912 DOI: 10.1371/journal.pbio.3001305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Oxytocin/vasopressin-related neuropeptides are highly conserved and play major roles in regulating social behavior across vertebrates. However, whether their insect orthologue, inotocin, regulates the behavior of social groups remains unknown. Here, we show that in the clonal raider ant Ooceraea biroi, individuals that perform tasks outside the nest have higher levels of inotocin in their brains than individuals of the same age that remain inside the nest. We also show that older ants, which spend more time outside the nest, have higher inotocin levels than younger ants. Inotocin thus correlates with the propensity to perform tasks outside the nest. Additionally, increasing inotocin pharmacologically increases the tendency of ants to leave the nest. However, this effect is contingent on age and social context. Pharmacologically treated older ants have a higher propensity to leave the nest only in the presence of larvae, whereas younger ants seem to do so only in the presence of pupae. Our results suggest that inotocin signaling plays an important role in modulating behaviors that correlate with age, such as social foraging, possibly by modulating behavioral response thresholds to specific social cues. Inotocin signaling thereby likely contributes to behavioral individuality and division of labor in ant societies. The neuropeptides oxytocin and vasopressin modulate social behavior in vertebrates, but their function in invertebrates is not well understood. Using brain staining and pharmacological manipulations, this study shows that a related neuropeptide, inotocin, affects how ants respond to larvae.
Collapse
Affiliation(s)
- Ingrid Fetter-Pruneda
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- * E-mail: (IFP); (DJCK)
| | - Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Yuko Ulrich
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Institute for Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Asaf Gal
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Peter R. Oxley
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Samuel J. Wood Library, Weill Cornell Medicine, New York, New York, United States of America
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Margaret S. Ebert
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Manija A. Kazmi
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, United States of America
| | - Jennifer L. Garrison
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Cornelia I. Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
- Chan Zuckerberg Initiative, Redwood City, California, United States of America
| | - Daniel J. C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- * E-mail: (IFP); (DJCK)
| |
Collapse
|
13
|
Oldroyd BP, Yagound B. The role of epigenetics, particularly DNA methylation, in the evolution of caste in insect societies. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200115. [PMID: 33866805 PMCID: PMC8059649 DOI: 10.1098/rstb.2020.0115] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Eusocial insects can be defined as those that live in colonies and have distinct queens and workers. For most species, queens and workers arise from a common genome, and so caste-specific developmental trajectories must arise from epigenetic processes. In this review, we examine the epigenetic mechanisms that may be involved in the regulation of caste dimorphism. Early work on honeybees suggested that DNA methylation plays a causal role in the divergent development of queen and worker castes. This view has now been challenged by studies that did not find consistent associations between methylation and caste in honeybees and other species. Evidence for the involvement of methylation in modulating behaviour of adult workers is also inconsistent. Thus, the functional significance of DNA methylation in social insects remains equivocal. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Benjamin P. Oldroyd
- BEE Laboratory, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| | - Boris Yagound
- BEE Laboratory, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
14
|
Majoe M, Libbrecht R, Foitzik S, Nehring V. Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190735. [PMID: 33678018 PMCID: PMC7938173 DOI: 10.1098/rstb.2019.0735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 01/18/2023] Open
Abstract
Longevity is traded off with fecundity in most solitary species, but the two traits are positively linked in social insects. In ants, the most fecund individuals (queens and kings) live longer than the non-reproductive individuals, the workers. In many species, workers may become fertile following queen loss, and recent evidence suggests that worker fecundity extends worker lifespan. We postulated that this effect is in part owing to improved resilience to oxidative stress, and tested this hypothesis in three Myrmicine ants: Temnothorax rugatulus, and the leaf-cutting ants Atta colombica and Acromyrmex echinatior. We removed the queen from colonies to induce worker reproduction and subjected workers to oxidative stress. Oxidative stress drastically reduced survival, but this effect was less pronounced in leaf-cutting ant workers from queenless nests. We also found that, irrespective of oxidative stress, outside workers died earlier than inside workers did, likely because they were older. Since At. colombica workers cannot produce fertile offspring, our results indicate that direct reproduction is not necessary to extend the lives of queenless workers. Our findings suggest that workers are less resilient to oxidative stress in the presence of the queen, and raise questions on the proximate and ultimate mechanisms underlying socially mediated variation in worker lifespan. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Megha Majoe
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
- Institute for Biology I (Zoology), University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Volker Nehring
- Institute for Biology I (Zoology), University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| |
Collapse
|
15
|
Korb J, Meusemann K, Aumer D, Bernadou A, Elsner D, Feldmeyer B, Foitzik S, Heinze J, Libbrecht R, Lin S, Majoe M, Monroy Kuhn JM, Nehring V, Negroni MA, Paxton RJ, Séguret AC, Stoldt M, Flatt T. Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190728. [PMID: 33678016 PMCID: PMC7938167 DOI: 10.1098/rstb.2019.0728] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects. Our results reveal a major role of the downstream components and target genes of this network (e.g. JH signalling, vitellogenins, major royal jelly proteins and immune genes) in affecting ageing and the caste-specific physiology of social insects, but an apparently lesser role of the upstream IIS/TOR signalling components. Together with a growing appreciation of the importance of such downstream targets, this leads us to propose the TI-J-LiFe (TOR/IIS-JH-Lifespan and Fecundity) network as a conceptual framework for understanding the mechanisms of ageing and fecundity in social insects and beyond. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Judith Korb
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Karen Meusemann
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Canberra, Acton 2601, Australia
| | - Denise Aumer
- Developmental Zoology, Molecular Ecology Research Group, Hoher Weg 4, D-06099 Halle (Saale), Germany
| | - Abel Bernadou
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Daniel Elsner
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, Georg-Voigt-Straße 14-16, D-60325 Frankfurt, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Silu Lin
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Megha Majoe
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - José Manuel Monroy Kuhn
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Volker Nehring
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Matteo A. Negroni
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Robert J. Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Alice C. Séguret
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - the So-Long consortium
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Canberra, Acton 2601, Australia
- Developmental Zoology, Molecular Ecology Research Group, Hoher Weg 4, D-06099 Halle (Saale), Germany
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, Georg-Voigt-Straße 14-16, D-60325 Frankfurt, Germany
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| |
Collapse
|
16
|
Yang H, Lyu B, Yin HQ, Li SQ. Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders. Zool Res 2021; 42:195-206. [PMID: 33709634 PMCID: PMC7995277 DOI: 10.24272/j.issn.2095-8137.2020.281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although widely thought to be aggressive, solitary, and potentially cannibalistic, some spider species have evolved group-living behaviors. The distinct transition provides the framework to uncover group-living evolution. Here, we conducted a comparative transcriptomic study and examined patterns of molecular evolution in two independently evolved group-living spiders and twelve solitary species. We report that positively selected genes among group-living spider lineages are significantly enriched in nutrient metabolism and autophagy pathways. We also show that nutrient-related genes of group-living spiders convergently experience amino acid substitutions and accelerated relative evolutionary rates. These results indicate adaptive convergence of nutrient metabolism that may ensure energy supply in group-living spiders. The decelerated evolutionary rate of autophagy-related genes in group-living lineages is consistent with an increased constraint on energy homeostasis as would be required in a group-living environment. Together, the results show that energy metabolic pathways play an important role in the transition to group-living in spiders.
Collapse
Affiliation(s)
- Han Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Lyu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Hai-Qiang Yin
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China. E-mail:
| | - Shu-Qiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. E-mail:
| |
Collapse
|
17
|
Taylor BA, Cini A, Wyatt CDR, Reuter M, Sumner S. The molecular basis of socially mediated phenotypic plasticity in a eusocial paper wasp. Nat Commun 2021; 12:775. [PMID: 33536437 PMCID: PMC7859208 DOI: 10.1038/s41467-021-21095-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
Phenotypic plasticity, the ability to produce multiple phenotypes from a single genotype, represents an excellent model with which to examine the relationship between gene expression and phenotypes. Analyses of the molecular foundations of phenotypic plasticity are challenging, however, especially in the case of complex social phenotypes. Here we apply a machine learning approach to tackle this challenge by analyzing individual-level gene expression profiles of Polistes dominula paper wasps following the loss of a queen. We find that caste-associated gene expression profiles respond strongly to queen loss, and that this change is partly explained by attributes such as age but occurs even in individuals that appear phenotypically unaffected. These results demonstrate that large changes in gene expression may occur in the absence of outwardly detectable phenotypic changes, resulting here in a socially mediated de-differentiation of individuals at the transcriptomic level but not at the levels of ovarian development or behavior.
Collapse
Affiliation(s)
- Benjamin A Taylor
- Centre for Biodiversity & Environment Research, University College London, London, UK.
- Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Alessandro Cini
- Centre for Biodiversity & Environment Research, University College London, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Christopher D R Wyatt
- Centre for Biodiversity & Environment Research, University College London, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Max Reuter
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Centre for Life's Origins and Evolution, University College London, London, UK
| | - Seirian Sumner
- Centre for Biodiversity & Environment Research, University College London, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| |
Collapse
|
18
|
Miyazaki S, Shimoji H, Suzuki R, Chinushi I, Takayanagi H, Yaguchi H, Miura T, Maekawa K. Expressions of conventional vitellogenin and vitellogenin-like A in worker brains are associated with a nursing task in a ponerine ant. INSECT MOLECULAR BIOLOGY 2021; 30:113-121. [PMID: 33150669 DOI: 10.1111/imb.12682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
In eusocial insect colonies, non-reproductive workers often perform different tasks. Tasks of an individual worker are shifted depending on various factors, e.g., age and colony demography. Although a vitellogenin (Vg) gene play regulatory roles in both reproductive and non-reproductive division of labours in a honeybee, it has been shown that the insect Vg underwent multiple gene duplications and sub-functionalisation, especially in apical ant lineages. The regulatory roles of duplicated Vgs were suggested to change evolutionarily among ants, whereas such roles in phylogenetically basal ants remain unclear. Here, we examined the expression patterns of conventional Vg (CVg), Vg-like A, Vg-like B and Vg-like C, as well as Vg receptor, during the task shift in an age-dependent manner and under experimental manipulation of colony demography in a primitive ant Diacamma sp. Expressions of CVg and Vg-like A in a brain were associated with a nursing task. It is suggested that associations of brain expressions of these Vgs with worker tasks were acquired in the basal ant lineage, and that such Vg functions could have sub-functionalised in the derived ant lineage.
Collapse
Affiliation(s)
- S Miyazaki
- Graduate School of Agriculture, Tamagawa University, Tokyo, Japan
| | - H Shimoji
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - R Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - I Chinushi
- Graduate School of Agriculture, Tamagawa University, Tokyo, Japan
| | - H Takayanagi
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - H Yaguchi
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - T Miura
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Japan
| | - K Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
19
|
Foraging and feeding are independently regulated by social and personal hunger in the clonal raider ant. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02985-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Cardoso-Junior CAM, Ronai I, Hartfelder K, Oldroyd BP. Queen pheromone modulates the expression of epigenetic modifier genes in the brain of honeybee workers. Biol Lett 2020; 16:20200440. [PMID: 33290662 DOI: 10.1098/rsbl.2020.0440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pheromones are used by many insects to mediate social interactions. In the highly eusocial honeybee (Apis mellifera), queen mandibular pheromone (QMP) is involved in the regulation of the reproductive and other behaviour of workers. The molecular mechanisms by which QMP acts are largely unknown. Here, we investigate how genes responsible for epigenetic modifications to DNA, RNA and histones respond to the presence of QMP in the environment. We show that several of these genes are upregulated in the honeybee brain when workers are exposed to artificial QMP. We propose that pheromonal communication systems, such as those used by social insects, evolved to respond to environmental signals by making use of existing epigenomic machineries.
Collapse
Affiliation(s)
- Carlos Antônio Mendes Cardoso-Junior
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Behaviour, Ecology and Evolution (BEE) laboratory, University of Sydney, Macleay Building A12, Sydney NSW 2006, Australia
| | - Isobel Ronai
- Behaviour, Ecology and Evolution (BEE) laboratory, University of Sydney, Macleay Building A12, Sydney NSW 2006, Australia
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Benjamin P Oldroyd
- Behaviour, Ecology and Evolution (BEE) laboratory, University of Sydney, Macleay Building A12, Sydney NSW 2006, Australia
| |
Collapse
|
21
|
Nagel M, Qiu B, Brandenborg LE, Larsen RS, Ning D, Boomsma JJ, Zhang G. The gene expression network regulating queen brain remodeling after insemination and its parallel use in ants with reproductive workers. SCIENCE ADVANCES 2020; 6:6/38/eaaz5772. [PMID: 32938672 PMCID: PMC7494347 DOI: 10.1126/sciadv.aaz5772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/27/2020] [Indexed: 05/16/2023]
Abstract
Caste differentiation happens early in development to produce gynes as future colony germlines and workers as present colony soma. However, gynes need insemination to become functional queens, a transition that initiates reproductive role differentiation relative to unmated gynes. Here, we analyze the anatomy and transcriptomes of brains during this differentiation process within the reproductive caste of Monomorium pharaonis Insemination terminated brain growth, whereas unmated control gynes continued to increase brain volume. Transcriptomes revealed a specific gene regulatory network (GRN) mediating both brain anatomy changes and behavioral modifications. This reproductive role differentiation GRN hardly overlapped with the gyne-worker caste differentiation GRN, but appears to be also used by distantly related ants where workers became germline individuals after the queen caste was entirely or partially lost. The genes corazonin and neuroparsin A in the anterior neurosecretory cells were overexpressed in individuals with reduced or nonreproductive roles across all four ant species investigated.
Collapse
Affiliation(s)
- Manuel Nagel
- Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Bitao Qiu
- Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Centre for Social Evolution, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lisa Eigil Brandenborg
- Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Rasmus Stenbak Larsen
- Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Dongdong Ning
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jacobus Jan Boomsma
- Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Centre for Social Evolution, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518083, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| |
Collapse
|
22
|
Mathuru AS, Libersat F, Vyas A, Teseo S. Why behavioral neuroscience still needs diversity?: A curious case of a persistent need. Neurosci Biobehav Rev 2020; 116:130-141. [PMID: 32565172 DOI: 10.1016/j.neubiorev.2020.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/29/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
Abstract
In the past few decades, a substantial portion of neuroscience research has moved from studies conducted across a spectrum of animals to reliance on a few species. While this undoubtedly promotes consistency, in-depth analysis, and a better claim to unraveling molecular mechanisms, investing heavily in a subset of species also restricts the type of questions that can be asked, and impacts the generalizability of findings. A conspicuous body of literature has long advocated the need to expand the diversity of animal systems used in neuroscience research. Part of this need is utilitarian with respect to translation, but the remaining is the knowledge that historically, a diverse set of species were instrumental in obtaining transformative understanding. We argue that diversifying matters also because the current approach limits the scope of what can be discovered. Technological advancements are already bridging several practical gaps separating these two worlds. What remains is a wholehearted embrace by the community that has benefitted from past history. We suggest the time for it is now.
Collapse
Affiliation(s)
- Ajay S Mathuru
- Yale-NUS College, 12 College Avenue West, Singapore; Institute of Molecular and Cell Biology, A⁎STAR, 61 Biopolis Drive, Singapore; Dept. of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Frédéric Libersat
- Dept. of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Ben Gurion University, Beer Sheva 8410501 Israel
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Serafino Teseo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
23
|
Cunningham CB. Functional genomics of parental care of insects. Horm Behav 2020; 122:104756. [PMID: 32353447 DOI: 10.1016/j.yhbeh.2020.104756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Parental care was likely the first step most lineages made towards sociality. However, the molecular mechanisms that generate parental care are not broadly characterized. Insects are important as an evolutionary independent group from classic models of parental care, such as, house mice. They provide an opportunity to test the generality of our understanding. With this review, I survey the functional genomics of parental care of insects, summarize several recent advances in the broader framework for studying and understanding parental care, and finish with suggested priorities for further research. Although there are too few studies to draw definitive conclusions, I argue that natural selection appears to be rewiring existing gene networks to produce parental care, that the epigenetic mechanisms influencing parental care are not well understood, and, as an interesting early consensus, that genes strongly associated with carer/offspring interactions appear biased towards proteins that are secreted. I summarize the studies that have functionally validate candidate genes and highlight the increasing need to perform this work. I finish with arguments for both conceptual and practical changes moving forward. I argue that future work can increase the use of predictive frameworks, broaden its definition of conservation of mechanism to gene networks rather than single genes, and increase the use of more established comparative methods. I further highlight the practical considerations of standardizing analyses and reporting, increasing the sampling of both carers and offspring, better characterizing gene regulatory networks, better characterizing taxonomically restricted genes and any consistent role they have underpinning parental care, and using factorial designs to disentangle the influence of multiple variables on the expression of parental care.
Collapse
|
24
|
Araki M, Miyakawa MO, Suzuki T, Miyakawa H. Two insulin‐like peptides may regulate egg production in opposite directions via juvenile hormone signaling in the queenless antPristomyrmex punctatus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:225-234. [DOI: 10.1002/jez.b.22935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Marina Araki
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya Tochigi Japan
| | - Misato O. Miyakawa
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya Tochigi Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya Tochigi Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya Tochigi Japan
| |
Collapse
|
25
|
Shell WA, Rehan SM. Social modularity: conserved genes and regulatory elements underlie caste-antecedent behavioural states in an incipiently social bee. Proc Biol Sci 2019; 286:20191815. [PMID: 31771475 PMCID: PMC6939254 DOI: 10.1098/rspb.2019.1815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
The evolutionary origins of advanced eusociality, one of the most complex forms of phenotypic plasticity in nature, have long been a focus within the field of sociobiology. Although eusocial insects are known to have evolved from solitary ancestors, sociogenomic research among incipiently social taxa has only recently provided empirical evidence supporting theories that modular regulation and deeply conserved genes may play important roles in both the evolutionary emergence and elaboration of insect sociality. There remains, however, a paucity of data to further test the biological reality of these and other evolutionary theories among taxa in the earliest stages of social evolution. Here, we present brain transcriptomic data from the incipiently social small carpenter bee, Ceratina calcarata, which captures patterns of cis-regulation and gene expression associated with female maturation, and underlying two well-defined behavioural states, foraging and guarding, concurrently demonstrated by mothers and daughters during early autumn. We find that an incipiently social nest environment may dramatically affect gene expression. We further reveal foraging and guarding behaviours to be putatively caste-antecedent states in C. calcarata, and offer strong empirical support for the operation of modular regulation, involving deeply conserved and differentially expressed genes in the expression of early social forms.
Collapse
Affiliation(s)
- Wyatt A. Shell
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
| | - Sandra M. Rehan
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, CanadaM3 J 1P3
| |
Collapse
|
26
|
Beekman M, Oldroyd BP. Conflict and major transitions - why we need true queens. CURRENT OPINION IN INSECT SCIENCE 2019; 34:73-79. [PMID: 31247422 DOI: 10.1016/j.cois.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
In contrast to human societies, where kings and queens can be sources of conflict, we argue that the morphologically distinct queens of insect colonies are central to the minimization of conflict within their societies. Thus, the evolution of irreversible queen and worker castes represents a major transition in social evolution. Queens are selected to become better reproducers, and workers are selected to become better workers. The reproductive success of queens and workers are, therefore, inextricably linked. Workers achieve reproductive success by assisting the queen, whereas the queen needs her workers to provide her with the wherewithal to raise her brood. The tighter the mutual dependence, the lower conflict, and the larger insect societies can become. As the queen becomes a better breeder, workers are selected to become better at raising their siblings. Yet, nothing in nature is ever free of conflict and with the evolution of a true worker caste a new set of conflicts arises. Multiple mating by queens in particular opens the door to a new set of conflicts. Ironically, multiple mating can only evolve once within-colony conflict is reduced by evolving a true worker caste.
Collapse
Affiliation(s)
- Madeleine Beekman
- Behaviour and Genetics of Social Insects Lab, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Lab, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Moore AJ, Benowitz KM. From phenotype to genotype: the precursor hypothesis predicts genetic influences that facilitate transitions in social behavior. CURRENT OPINION IN INSECT SCIENCE 2019; 34:91-96. [PMID: 31247425 PMCID: PMC7656704 DOI: 10.1016/j.cois.2019.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 05/03/2023]
Abstract
Parental care is expected to be one of the key evolutionary precursors to advanced social behavior. This suggests that there could be common genetic underpinnings to both parental care and sociality. However, little is known of the genetics underlying care. Here, we suggest that ethological predictions of behavioral precursors to care along with a genetic toolkit for behavior provide testable hypotheses and a defined approach to investigating genetics of sociality. We call this the 'precursor hypothesis'.
Collapse
Affiliation(s)
- Allen J Moore
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
28
|
Kohlmeier P, Alleman AR, Libbrecht R, Foitzik S, Feldmeyer B. Gene expression is more strongly associated with behavioural specialization than with age or fertility in ant workers. Mol Ecol 2019; 28:658-670. [PMID: 30525254 DOI: 10.1111/mec.14971] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022]
Abstract
The ecological success of social insects is based on division of labour, not only between queens and workers, but also among workers. Whether a worker tends the brood or forages is influenced by age, fertility and nutritional status, with brood carers being younger, more fecund and more corpulent. Here, we experimentally disentangle behavioural specialization from age and fertility in Temnothorax longispinosus ant workers and analyse how these parameters are linked to whole-body gene expression. A total of 3,644 genes were associated with behavioural specialization which is ten times more than associated with age and 50 times more than associated with fertility. Brood carers were characterized by an upregulation of three Vitellogenin (Vg) genes, one of which, Vg-like A, was the most differentially expressed gene that was recently shown experimentally to control the switch from brood to worker care. The expression of Conventional Vg was unlinked to behavioural specialization, age or fertility, which contrasts to studies on bees and some ants. Diversity in Vg/Vg-like copy number and expression bias across ants supports subfunctionalization of Vg genes and indicates that some regulatory mechanisms of division of labour diverged in different ant lineages. Simulations revealed that our experimental dissociation of co-varying factors reduced transcriptomic noise, suggesting that confounding factors could potentially explain inconsistencies across transcriptomic studies of behavioural specialization in ants. Thus, our study reveals that worker gene expression is mainly linked to the worker's function for the colony and provides novel insights into the evolution of sociality in ants.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Austin R Alleman
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| |
Collapse
|