1
|
Grybchuk D, Galan A, Klocek D, Macedo DH, Wolf YI, Votýpka J, Butenko A, Lukeš J, Neri U, Záhonová K, Kostygov AY, Koonin EV, Yurchenko V. Identification of diverse RNA viruses in Obscuromonas flagellates (Euglenozoa: Trypanosomatidae: Blastocrithidiinae). Virus Evol 2024; 10:veae037. [PMID: 38774311 PMCID: PMC11108086 DOI: 10.1093/ve/veae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
Trypanosomatids (Euglenozoa) are a diverse group of unicellular flagellates predominately infecting insects (monoxenous species) or circulating between insects and vertebrates or plants (dixenous species). Monoxenous trypanosomatids harbor a wide range of RNA viruses belonging to the families Narnaviridae, Totiviridae, Qinviridae, Leishbuviridae, and a putative group of tombus-like viruses. Here, we focus on the subfamily Blastocrithidiinae, a previously unexplored divergent group of monoxenous trypanosomatids comprising two related genera: Obscuromonas and Blastocrithidia. Members of the genus Blastocrithidia employ a unique genetic code, in which all three stop codons are repurposed to encode amino acids, with TAA also used to terminate translation. Obscuromonas isolates studied here bear viruses of three families: Narnaviridae, Qinviridae, and Mitoviridae. The latter viral group is documented in trypanosomatid flagellates for the first time. While other known mitoviruses replicate in the mitochondria, those of trypanosomatids appear to reside in the cytoplasm. Although no RNA viruses were detected in Blastocrithidia spp., we identified an endogenous viral element in the genome of B. triatomae indicating its past encounter(s) with tombus-like viruses.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czechia
| | - Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Donnamae Klocek
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Yuri I Wolf
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda 20894, USA
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Prague 128 00, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czechia
| | - Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 39040, Israel
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec 252 50, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Zoological Institute of the Ruian Academy of Sciences, St. Petersburg 199034, Russia
| | - Eugene V Koonin
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda 20894, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| |
Collapse
|
2
|
Afonin DA, Gerasimov ES, Škodová-Sveráková I, Záhonová K, Gahura O, Albanaz ATS, Myšková E, Bykova A, Paris Z, Lukeš J, Opperdoes FR, Horváth A, Zimmer SL, Yurchenko V. Blastocrithidia nonstop mitochondrial genome and its expression are remarkably insulated from nuclear codon reassignment. Nucleic Acids Res 2024; 52:3870-3885. [PMID: 38452217 DOI: 10.1093/nar/gkae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.
Collapse
MESH Headings
- Genome, Mitochondrial
- RNA Editing
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Open Reading Frames/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Trypanosomatina/genetics
- Trypanosomatina/metabolism
- Codon/genetics
- Mitochondria/genetics
- Mitochondria/metabolism
- Codon, Terminator/genetics
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- Genetic Code
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
Collapse
Affiliation(s)
- Dmitry A Afonin
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny S Gerasimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV 252 50 Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, T6G 2R3 Edmonton, Alberta, Canada
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
| | - Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
| | - Eva Myšková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
| | - Anastassia Bykova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| | - Fred R Opperdoes
- De Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Sara L Zimmer
- University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
| |
Collapse
|
3
|
Hollender M, Sałek M, Karlicki M, Karnkowska A. Single-cell genomics revealed Candidatus Grellia alia sp. nov. as an endosymbiont of Eutreptiella sp. (Euglenophyceae). Protist 2024; 175:126018. [PMID: 38325049 DOI: 10.1016/j.protis.2024.126018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Though endosymbioses between protists and prokaryotes are widespread, certain host lineages have received disproportionate attention what may indicate either a predisposition to such interactions or limited studies on certain protist groups due to lack of cultures. The euglenids represent one such group in spite of microscopic observations showing intracellular bacteria in some strains. Here, we perform a comprehensive molecular analysis of a previously identified endosymbiont in the Eutreptiella sp. CCMP3347 using a single cell approach and bulk culture sequencing. The genome reconstruction of this endosymbiont allowed the description of a new endosymbiont Candidatus Grellia alia sp. nov. from the family Midichloriaceae. Comparative genomics revealed a remarkably complete conjugative type IV secretion system present in three copies on the plasmid sequences of the studied endosymbiont, a feature missing in the closely related Grellia incantans. This study addresses the challenge of limited host cultures with endosymbionts by showing that the genomes of endosymbionts reconstructed from single host cells have the completeness and contiguity that matches or exceeds those coming from bulk cultures. This paves the way for further studies of endosymbionts in euglenids and other protist groups. The research also provides the opportunity to study the diversity of endosymbionts in natural populations.
Collapse
Affiliation(s)
- Metody Hollender
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Marta Sałek
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Michał Karlicki
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland.
| |
Collapse
|
4
|
Záhonová K, Valach M, Tripathi P, Benz C, Opperdoes FR, Barath P, Lukáčová V, Danchenko M, Faktorová D, Horváth A, Burger G, Lukeš J, Škodová-Sveráková I. Subunit composition of mitochondrial dehydrogenase complexes in diplonemid flagellates. Biochim Biophys Acta Gen Subj 2023:130419. [PMID: 37451476 DOI: 10.1016/j.bbagen.2023.130419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
In eukaryotes, pyruvate, a key metabolite produced by glycolysis, is converted by a tripartite mitochondrial pyruvate dehydrogenase (PDH) complex to acetyl-coenzyme A, which is fed into the tricarboxylic acid cycle. Two additional enzyme complexes with analogous composition catalyze similar oxidative decarboxylation reactions albeit using different substrates, the branched-chain ketoacid dehydrogenase (BCKDH) complex and the 2-oxoglutarate dehydrogenase (OGDH) complex. Comparative transcriptome analyses of diplonemids, one of the most abundant and diverse groups of oceanic protists, indicate that the conventional E1, E2, and E3 subunits of the PDH complex are lacking. E1 was apparently replaced in the euglenozoan ancestor of diplonemids by an AceE protein of archaeal type, a substitution that we also document in dinoflagellates. Here we demonstrate that the mitochondrion of the model diplonemid Paradiplonema papillatum displays pyruvate and 2-oxoglutarate dehydrogenase activities. Protein mass spectrometry of mitochondria reveal that the AceE protein is as abundant as the E1 subunit of BCKDH. This corroborates the view that the AceE subunit is a functional component of the PDH complex. We hypothesize that by acquiring AceE, the diplonemid ancestor not only lost the eukaryotic-type E1, but also the E2 and E3 subunits of the PDH complex, which are present in other euglenozoans. We posit that the PDH activity in diplonemids seems to be carried out by a complex, in which the AceE protein partners with the E2 and E3 subunits from BCKDH and/or OGDH.
Collapse
Affiliation(s)
- Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Medirex Group Academy, Nitra, Slovakia
| | | | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
5
|
Sinha SD, Wideman JG. The persistent homology of mitochondrial ATP synthases. iScience 2023; 26:106700. [PMID: 37250340 PMCID: PMC10214729 DOI: 10.1016/j.isci.2023.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Relatively little is known about ATP synthase structure in protists, and the investigated ones exhibit divergent structures distinct from yeast or animals. To clarify the subunit composition of ATP synthases across all eukaryotic lineages, we used homology detection techniques and molecular modeling tools to identify an ancestral set of 17 ATP synthase subunits. Most eukaryotes possess an ATP synthase comparable to those of animals and fungi, while some have undergone drastic divergence (e.g., ciliates, myzozoans, euglenozoans). Additionally, a ∼1 billion-year-old gene fusion between ATP synthase stator subunits was identified as a synapomorphy of the SAR (Stramenopila, Alveolata, Rhizaria) supergroup (stramenopile, alveolate, rhizaria). Our comparative approach highlights the persistence of ancestral subunits even amidst major structural changes. We conclude by urging that more ATP synthase structures (e.g., from jakobids, heteroloboseans, stramenopiles, rhizarians) are needed to provide a complete picture of the evolution of the structural diversity of this ancient and essential complex.
Collapse
Affiliation(s)
- Savar D. Sinha
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
6
|
Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A, Prokopchuk G, Batstone T, Lapébie P, Lemogo L, Sarrasin M, Stretenowich P, Tripathi P, Yazaki E, Nara T, Henrissat B, Lang BF, Gray MW, Williams TA, Lukeš J, Burger G. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 2023; 21:99. [PMID: 37143068 PMCID: PMC10161547 DOI: 10.1186/s12915-023-01563-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| | - Sandrine Moreira
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Celine Petitjean
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anna Nenarokova
- School of Biological Sciences, University of Bristol, Bristol, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tom Batstone
- School of Biological Sciences, University of Bristol, Bristol, UK
- Present address: High Performance Computing Centre, Bristol, UK
| | - Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
| | - Lionnel Lemogo
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
- Present address: Environment Climate Change Canada, Dorval, QC, Canada
| | - Matt Sarrasin
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Paul Stretenowich
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
- Present address: Canadian Centre for Computational Genomics; McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Euki Yazaki
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), Hirosawa, Wako, Saitama, Japan
| | - Takeshi Nara
- Laboratory of Molecular Parasitology, Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki City, Fukushima, Japan
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
- Present address: DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - B Franz Lang
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology, Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Gertraud Burger
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
7
|
Macher JN, Coots NL, Poh YP, Girard EB, Langerak A, Muñoz-Gómez SA, Sinha SD, Jirsová D, Vos R, Wissels R, Gile GH, Renema W, Wideman JG. Single-Cell Genomics Reveals the Divergent Mitochondrial Genomes of Retaria (Foraminifera and Radiolaria). mBio 2023; 14:e0030223. [PMID: 36939357 PMCID: PMC10127745 DOI: 10.1128/mbio.00302-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
Mitochondria originated from an ancient bacterial endosymbiont that underwent reductive evolution by gene loss and endosymbiont gene transfer to the nuclear genome. The diversity of mitochondrial genomes published to date has revealed that gene loss and transfer processes are ongoing in many lineages. Most well-studied eukaryotic lineages are represented in mitochondrial genome databases, except for the superphylum Retaria-the lineage comprising Foraminifera and Radiolaria. Using single-cell approaches, we determined two complete mitochondrial genomes of Foraminifera and two nearly complete mitochondrial genomes of radiolarians. We report the complete coding content of an additional 14 foram species. We show that foraminiferan and radiolarian mitochondrial genomes contain a nearly fully overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. In contrast to animals and fungi, many protists encode a diverse set of proteins on their mitochondrial genomes, including several ribosomal genes; however, some aerobic eukaryotic lineages (euglenids, myzozoans, and chlamydomonas-like algae) have reduced mitochondrial gene content and lack all ribosomal genes. Similar to these reduced outliers, we show that retarian mitochondrial genomes lack ribosomal protein and tRNA genes, contain truncated and divergent small and large rRNA genes, and contain only 14 or 15 protein-coding genes, including nad1, -3, -4, -4L, -5, and -7, cob, cox1, -2, and -3, and atp1, -6, and -9, with forams and radiolarians additionally carrying nad2 and nad6, respectively. In radiolarian mitogenomes, a noncanonical genetic code was identified in which all three stop codons encode amino acids. Collectively, these results add to our understanding of mitochondrial genome evolution and fill in one of the last major gaps in mitochondrial sequence databases. IMPORTANCE We present the reduced mitochondrial genomes of Retaria, the rhizarian lineage comprising the phyla Foraminifera and Radiolaria. By applying single-cell genomic approaches, we found that foraminiferan and radiolarian mitochondrial genomes contain an overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. An alternative genetic code was identified in radiolarian mitogenomes in which all three stop codons encode amino acids. Collectively, these results shed light on the divergent nature of the mitochondrial genomes from an ecologically important group, warranting further questions into the biological underpinnings of gene content variability and genetic code variation between mitochondrial genomes.
Collapse
Affiliation(s)
- Jan-Niklas Macher
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Nicole L. Coots
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Yu-Ping Poh
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Elsa B. Girard
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Anouk Langerak
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | | | - Savar D. Sinha
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Dagmar Jirsová
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Rutger Vos
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Richard Wissels
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Gillian H. Gile
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Willem Renema
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Jeremy G. Wideman
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
8
|
Mitochondrial RNA editing in Trypanoplasma borreli: new tools, new revelations. Comput Struct Biotechnol J 2022; 20:6388-6402. [DOI: 10.1016/j.csbj.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
|
9
|
Hałakuc P, Karnkowska A, Milanowski R. Typical structure of rRNA coding genes in diplonemids points to two independent origins of the bizarre rDNA structures of euglenozoans. BMC Ecol Evol 2022; 22:59. [PMID: 35534840 PMCID: PMC9082867 DOI: 10.1186/s12862-022-02014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background Members of Euglenozoa (Discoba) are known for unorthodox rDNA organization. In Euglenida rDNA is located on extrachromosomal circular DNA. In Kinetoplastea and Euglenida the core of the large ribosomal subunit, typically formed by the 28S rRNA, consists of several smaller rRNAs. They are the result of the presence of additional internal transcribed spacers (ITSs) in the rDNA. Diplonemea is the third of the main groups of Euglenozoa and its members are known to be among the most abundant and diverse protists in the oceans. Despite that, the rRNA of only one diplonemid species, Diplonema papillatum, has been examined so far and found to exhibit continuous 28S rRNA. Currently, the rDNA organization has not been researched for any diplonemid. Herein we investigate the structure of rRNA genes in classical (Diplonemidae) and deep-sea diplonemids (Eupelagonemidae), representing the majority of known diplonemid diversity. The results fill the gap in knowledge about diplonemid rDNA and allow better understanding of the evolution of the fragmented structure of the rDNA in Euglenozoa. Results We used available genomic (culture and single-cell) sequencing data to assemble complete or almost complete rRNA operons for three classical and six deep-sea diplonemids. The rDNA sequences acquired for several euglenids and kinetoplastids were used to provide the background for the analysis. In all nine diplonemids, 28S rRNA seems to be contiguous, with no additional ITSs detected. Similarly, no additional ITSs were detected in basal prokinetoplastids. However, we identified five additional ITSs in the 28S rRNA of all analysed metakinetoplastids, and up to twelve in euglenids. Only three of these share positions, and they cannot be traced back to their common ancestor. Conclusions Presented results indicate that independent origin of additional ITSs in euglenids and kinetoplastids seems to be the most likely. The reason for such unmatched fragmentation remains unknown, but for some reason euglenozoan ribosomes appear to be prone to 28S rRNA fragmentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02014-9.
Collapse
|
10
|
Tashyreva D, Simpson A, Prokopchuk G, Škodová-Sveráková I, Butenko A, Hammond M, George EE, Flegontova O, Záhonová K, Faktorová D, Yabuki A, Horák A, Keeling PJ, Lukeš J. Diplonemids – A Review on “New“ Flagellates on the Oceanic Block. Protist 2022; 173:125868. [DOI: 10.1016/j.protis.2022.125868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
|