1
|
O’Brien J, Mitchell C, Auerbach S, Doonan L, Ewald J, Everett L, Faranda A, Johnson K, Reardon A, Rooney J, Shao K, Stainforth R, Wheeler M, Dalmas Wilk D, Williams A, Yauk C, Costa E. Bioinformatic workflows for deriving transcriptomic points of departure: current status, data gaps, and research priorities. Toxicol Sci 2025; 203:147-159. [PMID: 39499193 PMCID: PMC11775421 DOI: 10.1093/toxsci/kfae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. Although conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. Although different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g. days) compared with apical endpoints from conventional tests (e.g. 90-d subchronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.
Collapse
Affiliation(s)
- Jason O’Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON J8X 4C6, Canada
| | - Constance Mitchell
- Health and Environmental Sciences Institute, Washington, DC 22205, United States
| | - Scott Auerbach
- Predictive Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, NC 27709, United States
| | - Liam Doonan
- Syngenta International Research Centre, Berkshire RG42 6EY, United Kingdom
| | - Jessica Ewald
- Institute of Parasitology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Logan Everett
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, United States
| | - Adam Faranda
- FMC Agricultural Solutions, Newark, DE 19711, United States
| | - Kamin Johnson
- Corteva Agriscience, Indianapolis, IN 46268, United States
| | - Anthony Reardon
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - John Rooney
- Syngenta Crop Protection, LLC, Greensboro, NC 27409, United States
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health—Bloomington, Indiana University, Bloomington, IN 47405, United States
| | - Robert Stainforth
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Matthew Wheeler
- Predictive Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, NC 27709, United States
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
2
|
Buer B, Dönitz J, Milner M, Mehlhorn S, Hinners C, Siemanowski‐Hrach J, Ulrich JK, Großmann D, Cedden D, Nauen R, Geibel S, Bucher G. Superior target genes and pathways for RNAi-mediated pest control revealed by genome-wide analysis in the beetle Tribolium castaneum. PEST MANAGEMENT SCIENCE 2025; 81:1026-1036. [PMID: 39498580 PMCID: PMC11716340 DOI: 10.1002/ps.8505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND An increasing human population, the emergence of resistances against pesticides and their potential impact on the environment call for the development of new eco-friendly pest control strategies. RNA interference (RNAi)-based pesticides have emerged as a new option with the first products entering the market. Essentially, double-stranded RNAs targeting essential genes of pests are either expressed in the plants or sprayed on their surface. Upon feeding, pests mount an RNAi response and die. However, it has remained unclear whether RNAi-based insecticides should target the same pathways as classic pesticides or whether the different mode-of-action would favor other processes. Moreover, there is no consensus on the best genes to be targeted. RESULTS We performed a genome-wide screen in the red flour beetle to identify 905 RNAi target genes. Based on a validation screen and clustering, we identified the 192 most effective target genes in that species. The transfer to oral application in other beetle pests revealed a list of 34 superior target genes, which are an excellent starting point for application in other pests. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses of our genome-wide dataset revealed that genes with high efficacy belonged mainly to basic cellular processes such as gene expression and protein homeostasis - processes not targeted by classic insecticides. CONCLUSION Our work revealed the best target genes and target processes for RNAi-based pest control and we propose a procedure to transfer our short list of superior target genes to other pests. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Benjamin Buer
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Jürgen Dönitz
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGöttingenGermany
| | - Martin Milner
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Sonja Mehlhorn
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Claudia Hinners
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Janna Siemanowski‐Hrach
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Julia K. Ulrich
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Daniela Großmann
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGöttingenGermany
| | - Doga Cedden
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Ralf Nauen
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Sven Geibel
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Gregor Bucher
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| |
Collapse
|
3
|
Cedden D, Bucher G. The quest for the best target genes for RNAi-mediated pest control. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39450789 DOI: 10.1111/imb.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
RNA interference (RNAi) has emerged as an eco-friendly alternative to classic pesticides for pest control. This review highlights the importance of identifying the best target genes for RNAi-mediated pest control. We argue that the knowledge-based approach to predicting effective targets is limited by our current gaps of knowledge, making unbiased screening a superior method for discovering the best target processes and genes. We emphasize the recent evidence that suggests targeting conserved basic cellular processes, such as protein degradation and translation, is more effective than targeting the classic pesticide target processes. We support these claims by comparing the efficacy of previously reported RNAi target genes and classic insecticide targets with data from our genome-wide RNAi screen in the red flour beetle, Tribolium castaneum. Finally, we provide practical advice for identifying excellent target genes in other pests, where large-scale RNAi screenings are typically challenging.
Collapse
Affiliation(s)
- Doga Cedden
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Leader DP, Naseem MT, Halberg KV. BeetleAtlas: An Ontogenetic and Tissue-specific Transcriptomic Atlas of the Red Flour Beetle Tribolium castaneum. J Mol Biol 2024; 436:168520. [PMID: 39237197 DOI: 10.1016/j.jmb.2024.168520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 09/07/2024]
Abstract
The red flour beetle Tribolium castaneum has emerged as a powerful model in insect functional genomics. However, a major limitation in the field is the lack of a detailed spatio-temporal view of the genetic signatures underpinning the function of distinct tissues and life stages. Here, we present an ontogenetic and tissue-specific web-based resource for Tribolium transcriptomics: BeetleAtlas (https://www.beetleatlas.org). This web application provides access to a database populated with quantitative expression data for nine adult and seven larval tissues, as well as for four embryonic stages of Tribolium. BeetleAtlas allows one to search for individual Tribolium genes to obtain values of both total gene expression and enrichment in different tissues, together with data for individual isoforms. To facilitate cross-species studies, one can also use Drosophila melanogaster gene identifiers to search for related Tribolium genes. For retrieved genes there are options to identify and display the tissue expression of related Tribolium genes or homologous Drosophila genes. Five additional search modes are available to find genes conforming to any of the following criteria: exhibiting high expression in a particular tissue; showing significant differences in expression between larva and adult; having a peak of expression at a specific stage of embryonic development; belonging to a particular functional category; and displaying a pattern of tissue expression similar to that of a query gene. We illustrate how the different feaures of BeetleAtlas can be used to illuminate our understanding of the genetic mechanisms underpinning the biology of what is the largest animal group on earth.
Collapse
Affiliation(s)
- David P Leader
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Muhammad T Naseem
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Kenneth V Halberg
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Copenhagen DK-2100, Denmark.
| |
Collapse
|
5
|
Kaufholz F, Ulrich J, Hakeemi MS, Bucher G. Temporal control of RNAi reveals both robust and labile feedback loops in the segmentation clock of the red flour beetle. Proc Natl Acad Sci U S A 2024; 121:e2318229121. [PMID: 38865277 PMCID: PMC11194489 DOI: 10.1073/pnas.2318229121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
Animals from all major clades have evolved a segmented trunk, reflected in the human spine or the insect segments. These units emerge during embryogenesis from a posterior segment addition zone (SAZ), where repetitive gene activity is regulated by a mechanism described by the clock and wavefront/speed gradient model. In the red flour beetle Tribolium castaneum, RNA interference (RNAi) has been used to continuously knock down the function of primary pair-rule genes (pPRGs), caudal or Wnt pathway components, which has led to the complete breakdown of segmentation. However, it has remained untested, if this breakdown was reversible by bringing the missing gene function back to the system. To fill this gap, we established a transgenic system in T. castaneum, which allows blocking an ongoing RNAi effect with temporal control by expressing a viral inhibitor of RNAi via heat shock. We show that the T. castaneum segmentation machinery was able to reestablish after RNAi targeting the pPRGs Tc-eve, Tc-odd, and Tc-runt was blocked. However, we observed no rescue after blocking RNAi targeting Wnt pathway components. We conclude that the insect segmentation system contains both robust feedback loops that can reestablish and labile feedback loops that break down irreversibly. This combination may reconcile conflicting needs of the system: Labile systems controlling initiation and maintenance of the SAZ ensure that only one SAZ is formed. Robust feedback loops confer developmental robustness toward external disturbances.
Collapse
Affiliation(s)
- Felix Kaufholz
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen37077, Germany
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| | - Julia Ulrich
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| | - Muhammad Salim Hakeemi
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| |
Collapse
|
6
|
Guo Y, Zeng Q, Brooks D, Geisbrecht ER. A conserved STRIPAK complex is required for autophagy in muscle tissue. Mol Biol Cell 2023; 34:ar91. [PMID: 37379167 PMCID: PMC10398890 DOI: 10.1091/mbc.e23-01-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Autophagy is important for cellular homeostasis and to prevent the abnormal accumulation of proteins. While many proteins that comprise the canonical autophagy pathway have been characterized, the identification of new regulators may help understand tissue and/or stress-specific responses. Using an in-silico approach, we identified Striatin interacting protein (Strip), MOB kinase activator 4, and fibroblast growth factor receptor 1 oncogene partner 2 as conserved mediators of muscle tissue maintenance. We performed affinity purification-mass spectrometry (AP-MS) experiments with Drosophila melanogaster Strip as a bait protein and copurified additional Striatin-interacting phosphatase and kinase (STRIPAK) complex members from larval muscle tissue. NUAK family kinase 1 (NUAK) and Starvin (Stv) also emerged as Strip-binding proteins and these physical interactions were verified in vivo using proximity ligation assays. To understand the functional significance of the STRIPAK-NUAK-Stv complex, we employed a sensitized genetic assay combined with RNA interference (RNAi) to demonstrate that both NUAK and stv function in the same biological process with genes that encode for STRIPAK complex proteins. RNAi-directed knockdown of Strip in muscle tissue led to the accumulation of ubiquitinated cargo, p62, and Autophagy-related 8a, consistent with a block in autophagy. Indeed, autophagic flux was decreased in Strip RNAi muscles, while lysosome biogenesis and activity were unaffected. Our results support a model whereby the STRIPAK-NUAK-Stv complex coordinately regulates autophagy in muscle tissue.
Collapse
Affiliation(s)
- Yungui Guo
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Qiling Zeng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Erika R. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
7
|
Linz DM, Hara Y, Deem KD, Kuraku S, Hayashi S, Tomoyasu Y. Transcriptomic exploration of the Coleopteran wings reveals insight into the evolution of novel structures associated with the beetle elytron. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:197-213. [PMID: 36617687 PMCID: PMC10107685 DOI: 10.1002/jez.b.23188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023]
Abstract
The acquisition of novel traits is central to organismal evolution, yet the molecular mechanisms underlying this process are elusive. The beetle forewings (elytra) are evolutionarily modified to serve as a protective shield, providing a unique opportunity to study these mechanisms. In the past, the orthologs of genes within the wing gene network from Drosophila studies served as the starting point when studying the evolution of elytra (candidate genes). Although effective, candidate gene lists are finite and only explore genes conserved across species. To go beyond candidate genes, we used RNA sequencing and explored the wing transcriptomes of two Coleopteran species, the red flour beetle (Tribolium castaneum) and the Japanese stag beetle (Dorcus hopei). Our analysis revealed sets of genes enriched in Tribolium elytra (57 genes) and genes unique to the hindwings, which possess more "typical" insect wing morphologies (29 genes). Over a third of the hindwing-enriched genes were "candidate genes" whose functions were previously analyzed in Tribolium, demonstrating the robustness of our sequencing. Although the overlap was limited, transcriptomic comparison between the beetle species found a common set of genes, including key wing genes, enriched in either elytra or hindwings. Our RNA interference analysis for elytron-enriched genes in Tribolium uncovered novel genes with roles in forming various aspects of morphology that are unique to elytra, such as pigmentation, hardening, sensory development, and vein formation. Our analyses deepen our understanding of how gene network evolution facilitated the emergence of the elytron, a unique structure critical to the evolutionary success of beetles.
Collapse
Affiliation(s)
- David M Linz
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - Yuichiro Hara
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kevin D Deem
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan.,Department of Biology, Kobe University Graduate School of Science, Kobe, Hyogo, Japan
| | | |
Collapse
|
8
|
Horn T, Narov KD, Panfilio KA. Persistent Parental RNAi in the Beetle Tribolium castaneum Involves Maternal Transmission of Long Double-Stranded RNA. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100064. [PMID: 36620196 PMCID: PMC9744488 DOI: 10.1002/ggn2.202100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 01/11/2023]
Abstract
Parental RNA interference (pRNAi) is a powerful and widely used method for gene-specific knockdown. Yet in insects its efficacy varies between species, and how the systemic response is transmitted from mother to offspring remains elusive. Using the beetle Tribolium castaneum, an RT-qPCR strategy to distinguish the presence of double-stranded RNA (dsRNA) from endogenous mRNA is reported. It is found that injected dsRNA is directly transmitted into the egg and persists throughout embryogenesis. Despite this depletion of dsRNA from the mother, it is shown that strong pRNAi can persist for months before waning at strain-specific rates. In seeking the receptor proteins for cellular uptake of long dsRNA into the egg, a phylogenomics profiling approach of candidate proteins is also presented. A visualization strategy based on taxonomically hierarchical assessment of orthology clustering data to rapidly assess gene age and copy number changes, refined by sequence-based evidence, is demonstrated. Repeated losses of SID-1-like channel proteins in the arthropods, including wholesale loss in the Heteroptera (true bugs), which are nonetheless highly sensitive to pRNAi, are thereby documented. Overall, practical considerations for insect pRNAi against a backdrop of outstanding questions on the molecular mechanism of dsRNA transmission for long-term, systemic knockdown are elucidated.
Collapse
Affiliation(s)
- Thorsten Horn
- Institute for Zoology: Developmental BiologyUniversity of CologneZülpicher Straße 47b50674CologneGermany
| | - Kalin D. Narov
- School of Life SciencesUniversity of WarwickGibbet Hill CampusCoventryCV4 7ALUK
| | - Kristen A. Panfilio
- Institute for Zoology: Developmental BiologyUniversity of CologneZülpicher Straße 47b50674CologneGermany
- School of Life SciencesUniversity of WarwickGibbet Hill CampusCoventryCV4 7ALUK
| |
Collapse
|
9
|
Lehmann S, Atika B, Grossmann D, Schmitt-Engel C, Strohlein N, Majumdar U, Richter T, Weißkopf M, Ansari S, Teuscher M, Hakeemi MS, Li J, Weißbecker B, Klingler M, Bucher G, Wimmer EA. Phenotypic screen and transcriptomics approach complement each other in functional genomics of defensive stink gland physiology. BMC Genomics 2022; 23:608. [PMID: 35987630 PMCID: PMC9392906 DOI: 10.1186/s12864-022-08822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/03/2022] [Indexed: 11/27/2022] Open
Abstract
Background Functional genomics uses unbiased systematic genome-wide gene disruption or analyzes natural variations such as gene expression profiles of different tissues from multicellular organisms to link gene functions to particular phenotypes. Functional genomics approaches are of particular importance to identify large sets of genes that are specifically important for a particular biological process beyond known candidate genes, or when the process has not been studied with genetic methods before. Results Here, we present a large set of genes whose disruption interferes with the function of the odoriferous defensive stink glands of the red flour beetle Tribolium castaneum. This gene set is the result of a large-scale systematic phenotypic screen using RNA interference applied in a genome-wide forward genetics manner. In this first-pass screen, 130 genes were identified, of which 69 genes could be confirmed to cause phenotypic changes in the glands upon knock-down, which vary from necrotic tissue and irregular reservoir size to irregular color or separation of the secreted gland compounds. Gene ontology analysis revealed that many of those genes are encoding enzymes (peptidases and cytochromes P450) as well as proteins involved in membrane trafficking with an enrichment in lysosome and mineral absorption pathways. The knock-down of 13 genes caused specifically a strong reduction of para-benzoquinones in the gland reservoirs, suggesting a specific function in the synthesis of these toxic compounds. Only 14 of the 69 confirmed gland genes are differentially overexpressed in stink gland tissue and thus could have been detected in a transcriptome-based analysis. However, only one out of eight genes identified by a transcriptomics approach known to cause phenotypic changes of the glands upon knock-down was recognized by this phenotypic screen, indicating the limitation of such a non-redundant first-pass screen. Conclusion Our results indicate the importance of combining diverse and independent methodologies to identify genes necessary for the function of a certain biological tissue, as the different approaches do not deliver redundant results but rather complement each other. The presented phenotypic screen together with a transcriptomics approach are now providing a set of close to hundred genes important for odoriferous defensive stink gland physiology in beetles. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08822-z.
Collapse
|
10
|
Klingler M, Bucher G. The red flour beetle T. castaneum: elaborate genetic toolkit and unbiased large scale RNAi screening to study insect biology and evolution. EvoDevo 2022; 13:14. [PMID: 35854352 PMCID: PMC9295526 DOI: 10.1186/s13227-022-00201-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The red flour beetle Tribolium castaneum has emerged as an important insect model system for a variety of topics. With respect to studying gene function, it is second only to the vinegar fly D. melanogaster. The RNAi response in T. castaneum is exceptionally strong and systemic, and it appears to target all cell types and processes. Uniquely for emerging model organisms, T. castaneum offers the opportunity of performing time- and cost-efficient large-scale RNAi screening, based on commercially available dsRNAs targeting all genes, which are simply injected into the body cavity. Well established transgenic and genome editing approaches are met by ease of husbandry and a relatively short generation time. Consequently, a number of transgenic tools like UAS/Gal4, Cre/Lox, imaging lines and enhancer trap lines are already available. T. castaneum has been a genetic experimental system for decades and now has become a workhorse for molecular and reverse genetics as well as in vivo imaging. Many aspects of development and general biology are more insect-typical in this beetle compared to D. melanogaster. Thus, studying beetle orthologs of well-described fly genes has allowed macro-evolutionary comparisons in developmental processes such as axis formation, body segmentation, and appendage, head and brain development. Transgenic approaches have opened new ways for in vivo imaging. Moreover, this emerging model system is the first choice for research on processes that are not represented in the fly, or are difficult to study there, e.g. extraembryonic tissues, cryptonephridial organs, stink gland function, or dsRNA-based pesticides.
Collapse
Affiliation(s)
- Martin Klingler
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 5, 91058, Erlangen, Germany.
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|