1
|
Cea-Sánchez S, Martín-Villanueva S, Gutiérrez G, Cánovas D, Corrochano LM. VE-1 regulation of MAPK signaling controls sexual development in Neurospora crassa. mBio 2024; 15:e0226424. [PMID: 39283084 PMCID: PMC11481897 DOI: 10.1128/mbio.02264-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024] Open
Abstract
Sexual reproduction in fungi allows genetic recombination and increases genetic diversity, allowing adaptation and survival. The velvet complex is a fungal-specific protein assembly that regulates development, pathogenesis, and secondary metabolism in response to environmental cues, such as light. In Neurospora crassa, this complex comprises VE-1, VE-2, and LAE-1. Deletion of ve-1 or ve-2, but not lae-1, leads to increased conidiation (asexual spore formation) and reduced sexual development. Mutants lacking ve-1 and/or ve-2 are female sterile and male fertile, indicating that a VE-1/VE-2 complex regulates the development of female structures. During sexual development, we observed differential regulation of 2,117 genes in dark and 4,364 genes in light between the wild type and the ∆ve-1 strain. The pheromone response and cell wall integrity pathways were downregulated in the ∆ve-1 mutant, especially in light. Additionally, we found reduced levels of both total and phosphorylated MAK-1 and MAK-2 kinases. In vitro experiments demonstrated the binding of VE-1 and VE-2 to the promoters of mak-1 and mak-2, suggesting a direct regulatory role of VE-1/VE-2 in the transcriptional control of MAPK genes to regulate sexual development. Deletion of the photosensor gene white-collar 1 prevented the light-dependent inhibition of sexual development in the ∆ve-1 mutant by increasing transcription of the pheromone response and cell wall integrity pathway genes to the levels in the dark. Our results support the proposal that the regulation of the MAP kinase pathways by the VE-1/VE-2 complex is a key element in transcriptional regulation that occurs during sexual development. IMPORTANCE Sexual reproduction generates new gene combinations and novel phenotypic traits and facilitates evolution. Induction of sexual development in fungi is often regulated by environmental conditions, such as the presence of light and nutrients. The velvet protein complex coordinates internal cues and environmental signals to regulate development. We have found that VE-1, a component of the velvet complex, regulates transcription during sexual development in the fungus Neurospora crassa. VE-1 regulates the transcription of many genes, including those involved in mitogen-activated protein kinase (MAPK) signaling pathways that are essential in the regulation of sexual development, and regulates the activity of the MAPK pathway. Our findings provide valuable insights into how fungi respond to environmental signals and integrate them into their reproductive processes.
Collapse
Affiliation(s)
- Sara Cea-Sánchez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Duan Y, Chen X, Wang T, Li M. The serine/threonine protein kinase MpSTE1 directly governs hyphal branching in Monascus spp. Appl Microbiol Biotechnol 2024; 108:255. [PMID: 38446219 PMCID: PMC10917826 DOI: 10.1007/s00253-024-13093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Monascus spp. are commercially important fungi due to their ability to produce beneficial secondary metabolites such as the cholesterol-lowering agent lovastatin and natural food colorants azaphilone pigments. Although hyphal branching intensively influenced the production of these secondary metabolites, the pivotal regulators of hyphal development in Monascus spp. remain unclear. To identify these important regulators, we developed an artificial intelligence (AI)-assisted image analysis tool for quantification of hyphae-branching and constructed a random T-DNA insertion library. High-throughput screening revealed that a STE kinase, MpSTE1, was considered as a key regulator of hyphal branching based on the hyphal phenotype. To further validate the role of MpSTE1, we generated an mpSTE1 gene knockout mutant, a complemented mutant, and an overexpression mutant (OE::mpSTE1). Microscopic observations revealed that overexpression of mpSTE1 led to a 63% increase in branch number while deletion of mpSTE1 reduced the hyphal branching by 68% compared to the wild-type strain. In flask cultures, the strain OE::mpSTE1 showed accelerated growth and glucose consumption. More importantly, the strain OE::mpSTE1 produced 9.2 mg/L lovastatin and 17.0 mg/L azaphilone pigments, respectively, 47.0% and 30.1% higher than those of the wild-type strain. Phosphoproteomic analysis revealed that MpSTE1 directly phosphorylated 7 downstream signal proteins involved in cell division, cytoskeletal organization, and signal transduction. To our best knowledge, MpSTE1 is reported as the first characterized regulator for tightly regulating the hyphal branching in Monascus spp. These findings significantly expanded current understanding of the signaling pathway governing the hyphal branching and development in Monascus spp. Furthermore, MpSTE1 and its analogs were demonstrated as promising targets for improving production of valuable secondary metabolites. KEY POINTS: • MpSTE1 is the first characterized regulator for tightly regulating hyphal branching • Overexpression of mpSTE1 significantly improves secondary metabolite production • A high-throughput image analysis tool was developed for counting hyphal branching.
Collapse
Affiliation(s)
- Yali Duan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Xizhu Chen
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Tingya Wang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Mu Li
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China.
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
3
|
Yu W, Pei R, Zhang Y, Tu Y, He B. Light regulation of secondary metabolism in fungi. J Biol Eng 2023; 17:57. [PMID: 37653453 PMCID: PMC10472637 DOI: 10.1186/s13036-023-00374-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Fungi have evolved unique metabolic regulation mechanisms for adapting to the changing environments. One of the key features of fungal adaptation is the production of secondary metabolites (SMs), which are essential for survival and beneficial to the organism. Many of these SMs are produced in response to the environmental cues, such as light. In all fungal species studied, the Velvet complex transcription factor VeA is a central player of the light regulatory network. In addition to growth and development, the intensity and wavelength of light affects the formation of a broad range of secondary metabolites. Recent studies, mainly on species of the genus Aspergillus, revealed that the dimer of VeA-VelB and LaeA does not only regulate gene expression in response to light, but can also be involved in regulating production of SMs. Furthermore, the complexes have a wide regulatory effect on different types of secondary metabolites. In this review, we discussed the role of light in the regulation of fungal secondary metabolism. In addition, we reviewed the photoreceptors, transcription factors, and signaling pathways that are involved in light-dependent regulation of secondary metabolism. The effects of transcription factors on the production of secondary metabolites, as well as the potential applications of light regulation for the production of pharmaceuticals and other products were discussed. Finally, we provided an overview of the current research in this field and suggested potential areas for future research.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
4
|
Sarikaya Bayram Ö, Bayram Ö, Karahoda B, Meister C, Köhler AM, Thieme S, Elramli N, Frawley D, McGowan J, Fitzpatrick DA, Schmitt K, de Assis LJ, Valerius O, Goldman GH, Braus GH. F-box receptor mediated control of substrate stability and subcellular location organizes cellular development of Aspergillus nidulans. PLoS Genet 2022; 18:e1010502. [PMID: 36508464 PMCID: PMC9744329 DOI: 10.1371/journal.pgen.1010502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
Fungal growth and development are coordinated with specific secondary metabolism. This coordination requires 8 of 74 F-box proteins of the filamentous fungus Aspergillus nidulans. F-box proteins recognize primed substrates for ubiquitination by Skp1-Cul1-Fbx (SCF) E3 ubiquitin RING ligases and degradation by the 26S proteasome. 24 F-box proteins are found in the nuclear fraction as part of SCFs during vegetative growth. 43 F-box proteins interact with SCF proteins during growth, development or stress. 45 F-box proteins are associated with more than 700 proteins that have mainly regulatory roles. This corroborates that accurate surveillance of protein stability is prerequisite for organizing multicellular fungal development. Fbx23 combines subcellular location and protein stability control, illustrating the complexity of F-box mediated regulation during fungal development. Fbx23 interacts with epigenetic methyltransferase VipC which interacts with fungal NF-κB-like velvet domain regulator VeA that coordinates fungal development with secondary metabolism. Fbx23 prevents nuclear accumulation of methyltransferase VipC during early development. These results suggest that in addition to their role in protein degradation, F-box proteins also control subcellular accumulations of key regulatory proteins for fungal development.
Collapse
Affiliation(s)
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Cindy Meister
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anna M. Köhler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Sabine Thieme
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Nadia Elramli
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Dean Frawley
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jamie McGowan
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Leandro Jose de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Cea-Sánchez S, Corrochano-Luque M, Gutiérrez G, Glass NL, Cánovas D, Corrochano LM. Transcriptional Regulation by the Velvet Protein VE-1 during Asexual Development in the Fungus Neurospora crassa. mBio 2022; 13:e0150522. [PMID: 35913159 PMCID: PMC9426599 DOI: 10.1128/mbio.01505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Asexual reproduction in fungi facilitates the dispersal and colonization of new substrates and, in pathogenic fungi, allows infection of plants and animals. The velvet complex is a fungus-specific protein complex that participates in the regulation of gene expression in response to environmental signals like light, as well as developmental processes, pathogenesis, and secondary metabolism. The velvet complex in the fungus Neurospora crassa is composed of three proteins, VE-1, VE-2, and LAE-1. Mutations in ve-1 or ve-2, but not in lae-1, led to shorter heights of aerial tissue, a mixture of aerial hyphae and developing macroconidia, and increased microconidiation when they were combined with mutations in the transcription factor gene fl. VE-2 and LAE-1 were detected during vegetative growth and conidiation, unlike VE-1, which was mostly observed in samples obtained from submerged vegetative hyphae. We propose that VE-1 is the limiting component of the velvet complex during conidiation and has a major role in the transcriptional regulation of conidiation. Characterization of the role of VE-1 during mycelial growth and asexual development (conidiation) by transcriptome sequencing (RNA-seq) experiments allowed the identification of a set of genes regulated by VE-1 that participate in the regulation of conidiation, most notably the transcription factor genes vib-1 and fl. We propose that VE-1 and VE-2 regulate the development of aerial tissue and the balance between macro- and microconidiation in coordination with FL and VIB-1. IMPORTANCE Most fungi disperse in nature and infect new hosts by producing vegetative spores or conidia during asexual development. This is a process that is regulated by environmental signals like light and the availability of nutrients. A protein complex, the velvet complex, participates in the integration of environmental signals to regulate conidiation. We have found that a key component of this complex in the fungus Neurospora crassa, VE-1, has a major role in the regulation of transcription during conidiation. VE-1 regulates a large number of genes, including the genes for the transcription factors FL and VIB-1. Our results will help to understand how environmental signals are integrated in the fungal cell to regulate development.
Collapse
Affiliation(s)
- Sara Cea-Sánchez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - N. Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, Berkeley, California, USA
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|