1
|
Kan S, Su X, Yang L, Zhou H, Qian M, Zhang W, Li C. From light into shadow: comparative plastomes in Petrocosmea and implications for low light adaptation. BMC PLANT BIOLOGY 2024; 24:949. [PMID: 39394065 PMCID: PMC11468349 DOI: 10.1186/s12870-024-05669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Plastids originated from an ancient endosymbiotic event and evolved into the photosynthetic organelles in plant cells. They absorb light energy and carbon dioxide, converting them into chemical energy and oxygen, which are crucial for plant development and adaptation. However, little is known about the plastid genome to light adaptation. Petrocosmea, a member of the Gesneriaceae family, comprises approximately 70 species with diverse light environment, serve as an ideal subject for studying plastomes adapt to light. RESULTS In this study, we selected ten representative species of Petrocosmea from diverse light environments, assembled their plastid genomes, and conducted a comparative genomic analysis. We found that the plastid genome of Petrocosmea is highly conserved in both structure and gene content. The phylogenetic relationships reconstructed based on the plastid genes were divided into five clades, which is consistent with the results of previous studies. The vast majority of plastid protein-coding genes were under purifying selection, with only the rps8 and rps16 genes identified under positive selection in different light environments. Notably, significant differences of evolutionary rate were observed in NADH dehydrogenase, ATPase ribosome, and RNA polymerase between Clade A and the other clades. Additionally, we identified ycf1 and several intergenic regions (trnH-psbA, trnK-rps16, rpoB-trnC, petA-psbJ, ccsA-trnL, rps16-trnQ, and trnS-trnG) as candidate barcodes for this emerging ornamental horticulture. CONCLUSION We newly assembled ten plastid genomes of Petrocosmea and identified several hypervariable regions, providing genetic resources and candidate markers for this promising emerging ornamental horticulture. Furthermore, our study suggested that rps8 and rps16 were under positive selection and that the evolutionary patterns of NADH dehydrogenase, ATPase ribosome, and RNA polymerase were related to the diversity light environment in Petrocosmea. This revealed an evolutionary scenario for light adaptation of the plastid genome in plants.
Collapse
Affiliation(s)
- Shenglong Kan
- Marine College, Shandong University, Weihai, 264209, China
| | - Xiaoju Su
- Marine College, Shandong University, Weihai, 264209, China
| | - Liu Yang
- Marine College, Shandong University, Weihai, 264209, China
| | - Hongling Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, China
| | - Mu Qian
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, 250110, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, 264209, China.
| | - Chaoqun Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
- Shandong Engineering Research Center of Rose Breeding Technology and Germplasm Innovation, School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
| |
Collapse
|
2
|
Xiong Y, Ishara MS, Hyde KD, Taylor JE, Phillips A, Pereira DS, Lu L, Zhang SN, Mapook A, Xu B. Introducing palmfungi.org, an integrated fungal-host data platform. Biodivers Data J 2024; 12:e126553. [PMID: 39391555 PMCID: PMC11464899 DOI: 10.3897/bdj.12.e126553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Palm fungi are a diverse and unique group mostly found on Arecaceae hosts. They have been studied for approximately 200 years resulting in a large number of known fungal species representing over 700 genera. The timeline of palm fungal studies could be roughly divided into three phases, based on the methods and frequency of reports. They are the "Historical palm fungi era", "Classical palm fungi era" and "Molecular palm fungi era". In the first two periods, the identification of palm fungi was based on morphology, which resulted in a considerable number of morphological species scattered across the data in books, monographs and papers. With the advancement of molecular techniques, studies on palm fungi accelerated. A large number of new species were introduced in the molecular era, especially from Asia, including China and Thailand. However, there is a necessity to link these three generations of studies into a single platform combining data related to host factors, geography and utilisation. Herein, we introduce the palm fungi website: https://palmfungi.org, an integrated data platform for interactive retrieval, based on palm and fungal species. This website is not only a portal for the latest, comprehensive species information on palm fungi, but also provides a new platform for fungal researchers to explore the host-specificity of palm fungi. Additionally, this study uses palmfungi.org and related data to briefly discuss the current status of research on the distribution of palm fungi populations, showing how palmfungi.org links fungi with their palm hosts. Furthermore, the website will act as a platform for collaboration amongst taxonomists, plant pathologists, botanists, ecologists and those who are interested in palms and their relationship with ecological sustainability.
Collapse
Affiliation(s)
- Yinru Xiong
- Center of Excellence in Fungal Research, Chiang Rai, ThailandCenter of Excellence in Fungal ResearchChiang RaiThailand
- School of Science, Mae Fah Luang University, Chiang Rai, ThailandSchool of Science, Mae Fah Luang UniversityChiang RaiThailand
- Innovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, ChinaInnovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Manawasinghe S. Ishara
- Innovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, ChinaInnovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Chiang Rai, ThailandCenter of Excellence in Fungal ResearchChiang RaiThailand
- School of Science, Mae Fah Luang University, Chiang Rai, ThailandSchool of Science, Mae Fah Luang UniversityChiang RaiThailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, ChinaCAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of ScienceKunmingChina
- Department of Botany and Microbiology, College of Science, Riyadh, Saudi ArabiaDepartment of Botany and Microbiology, College of ScienceRiyadhSaudi Arabia
| | - Joanne E. Taylor
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, United KingdomRoyal Botanic Garden EdinburghEdinburgh EH3 5LRUnited Kingdom
| | - Alan Phillips
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, PortugalBiosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de LisboaLisbonPortugal
| | - Diana Santos Pereira
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, PortugalBiosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de LisboaLisbonPortugal
| | - Li Lu
- Center of Excellence in Fungal Research, Chiang Rai, ThailandCenter of Excellence in Fungal ResearchChiang RaiThailand
- School of Science, Mae Fah Luang University, Chiang Rai, ThailandSchool of Science, Mae Fah Luang UniversityChiang RaiThailand
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, ChinaCenter for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal UniversityQujingChina
| | - Sheng-Nan Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, ChinaSchool of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of ChinaChengduChina
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Chiang Rai, ThailandCenter of Excellence in Fungal ResearchChiang RaiThailand
| | - Biao Xu
- Innovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, ChinaInnovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and EngineeringGuangzhouChina
| |
Collapse
|
3
|
Wang Y, Xu C, Guo X, Wang Y, Chen Y, Shen J, He C, Yu Y, Wang Q. Phylogenomics analysis of Scutellaria (Lamiaceae) of the world. BMC Biol 2024; 22:185. [PMID: 39218872 PMCID: PMC11367873 DOI: 10.1186/s12915-024-01982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Scutellaria, a sub-cosmopolitan genus, stands as one of the Lamiaceae family's largest genera, encompassing approximately 500 species found in both temperate and tropical montane regions. Recognized for its significant medicinal properties, this genus has garnered attention as a research focus, showcasing anti-cancer, anti-inflammatory, antioxidant, and hepatoprotective qualities. Additionally, it finds application in agriculture and horticulture. Comprehending Scutellaria's taxonomy is pivotal for its effective utilization and conservation. However, the current taxonomic frameworks, primarily based on morphological characteristics, are inadequate. Despite several phylogenetic studies, the species relationships and delimitations remain ambiguous, leaving the genus without a stable and reliable classification system. RESULTS This study analyzed 234 complete chloroplast genomes, comprising 220 new and 14 previously published sequences across 206 species, subspecies, and varieties worldwide. Phylogenetic analysis was conducted using six data matrices through Maximum Likelihood and Bayesian Inference, resulting in a robustly supported phylogenetic framework for Scutellaria. We propose three subgenera, recommending the elevation of Section Anaspis to subgeneric rank and the merging of Sections Lupulinaria and Apeltanthus. The circumscription of Subgenus Apeltanthus and Section Perilomia needs to be reconsidered. Comparative analysis of chloroplast genomes highlighted the IR/SC boundary feature as a significant taxonomic indicator. We identified a total of 758 SSRs, 558 longer repetitive sequences, and ten highly variable regions, including trnK-rps16, trnC-petN, petN-psbM, accD-psaI, petA-psbJ, rpl32-trnL, ccsA-ndhD, rps15-ycf1, ndhF, and ycf1. These findings serve as valuable references for future research on species identification, phylogeny, and population genetics. CONCLUSIONS The phylogeny of Scutellaria, based on the most comprehensive sample collection to date and complete chloroplast genome analysis, has significantly enhanced our understanding of its infrageneric relationships. The extensive examination of chloroplast genome characteristics establishes a solid foundation for the future development and utilization of Scutellaria, an important medicinal plant globally.
Collapse
Affiliation(s)
- Yinghui Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Wuhan, 430047, China
| | - Yan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyi Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Shen
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, China
| | - Chunnian He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiang Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Lee SR, Oh A, Son DC. Characterization, comparison, and phylogenetic analyses of chloroplast genomes of Euphorbia species. Sci Rep 2024; 14:15352. [PMID: 38961172 PMCID: PMC11222452 DOI: 10.1038/s41598-024-66102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
The genus Euphorbia (Euphorbiaceae) has near-cosmopolitan distribution and serves as a significant resource for both ornamental and medicinal purposes. Despite its economic importance, Euphorbia's taxonomy has long been challenged by the intricate nature of morphological traits exhibiting high levels of convergence. While molecular markers are essential for phylogenetic studies, their availability for Euphorbia has been limited. To address this gap, we conducted comparative analyses focusing on the chloroplast (CP) genomes of nine Euphorbia species, incorporating three newly sequenced and annotated accessions. In addition, phylogenetic informativeness and nucleotide diversity were computed to identify candidate markers for phylogenetic analyses among closely related taxa in the genus. Our investigation revealed relatively conserved sizes and structures of CP genomes across the studied species, with notable interspecific variations observed primarily in non-coding regions and IR/SC borders. By leveraging phylogenetic informativeness and nucleotide diversity, we identified rpoB gene as the optimal candidate for species delimitation and shallow-level phylogenetic inference within the genus. Through this comprehensive analysis of CP genomes across multiple taxa, our study sheds light on the evolutionary dynamics and taxonomic intricacies of Euphorbia, offering valuable insights into its CP genome evolution and taxonomy.
Collapse
Affiliation(s)
- Soo-Rang Lee
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Ami Oh
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452, Republic of Korea
| | - Dong Chan Son
- Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, 11186, Republic of Korea.
| |
Collapse
|
5
|
Hou Z, Yang S, He W, Lu T, Feng X, Zang L, Bai W, Chen X, Nie B, Li C, Wei M, Ma L, Han Z, Zou Q, Li W, Wang L. The haplotype-resolved genome of diploid Chrysanthemum indicum unveils new acacetin synthases genes and their evolutionary history. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38864745 DOI: 10.1111/tpj.16854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024]
Abstract
Acacetin, a flavonoid compound, possesses a wide range of pharmacological effects, including antimicrobial, immune regulation, and anticancer effects. Some key steps in its biosynthetic pathway were largely unknown in flowering plants. Here, we present the first haplotype-resolved genome of Chrysanthemum indicum, whose dried flowers contain abundant flavonoids and have been utilized as traditional Chinese medicine. Various phylogenetic analyses revealed almost equal proportion of three tree topologies among three Chrysanthemum species (C. indicum, C. nankingense, and C. lavandulifolium), indicating that frequent gene flow among Chrysanthemum species or incomplete lineage sorting due to rapid speciation might contribute to conflict topologies. The expanded gene families in C. indicum were associated with oxidative functions. Through comprehensive candidate gene screening, we identified five flavonoid O-methyltransferase (FOMT) candidates, which were highly expressed in flowers and whose expressional levels were significantly correlated with the content of acacetin. Further experiments validated two FOMTs (CI02A009970 and CI03A006662) were capable of catalyzing the conversion of apigenin into acacetin, and these two genes are possibly responsible acacetin accumulation in disc florets and young leaves, respectively. Furthermore, combined analyses of ancestral chromosome reconstruction and phylogenetic trees revealed the distinct evolutionary fates of the two validated FOMT genes. Our study provides new insights into the biosynthetic pathway of flavonoid compounds in the Asteraceae family and offers a model for tracing the origin and evolutionary routes of single genes. These findings will facilitate in vitro biosynthetic production of flavonoid compounds through cellular and metabolic engineering and expedite molecular breeding of C. indicum cultivars.
Collapse
Affiliation(s)
- Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Song Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Weijun He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Tingting Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xunmeng Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lanlan Zang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Wenhui Bai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xueqing Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Min Wei
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
| | - Liangju Ma
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
| | - Zhengzhou Han
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
| | - Qingjun Zou
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China
| |
Collapse
|
6
|
Pérez-Calle V, Bellot S, Kuhnhäuser BG, Pillon Y, Forest F, Leitch IJ, Baker WJ. Phylogeny, biogeography and ecological diversification of New Caledonian palms (Arecaceae). ANNALS OF BOTANY 2024; 134:85-100. [PMID: 38527418 PMCID: PMC11161567 DOI: 10.1093/aob/mcae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/24/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND AND AIMS The geographical origin and evolutionary mechanisms underpinning the rich and distinctive New Caledonian flora remain poorly understood. This is attributable to the complex geological past of the island and to the scarcity of well-resolved species-level phylogenies. Here, we infer phylogenetic relationships and divergence times of New Caledonian palms, which comprise 40 species. We use this framework to elucidate the biogeography of New Caledonian palm lineages and to explore how extant species might have formed. METHODS A phylogenetic tree including 37 New Caledonian palm species and 77 relatives from tribe Areceae was inferred from 151 nuclear genes obtained by targeted sequencing. Fossil-calibrated divergence times were estimated and ancestral ranges inferred. Ancestral and extant ecological preferences in terms of elevation, precipitation and substrate were compared between New Caledonian sister species to explore their possible roles as drivers of speciation. KEY RESULTS New Caledonian palms form four well-supported clades, inside which relationships are well resolved. Our results support the current classification but suggest that Veillonia and Campecarpus should be resurrected and fail to clarify whether Rhopalostylidinae is sister to or nested in Basseliniinae. New Caledonian palm lineages are derived from New Guinean and Australian ancestors, which reached the island through at least three independent dispersal events between the Eocene and Miocene. Palms then dispersed out of New Caledonia at least five times, mainly towards Pacific islands. Geographical and ecological transitions associated with speciation events differed across time and genera. Substrate transitions were more frequently associated with older events than with younger ones. CONCLUSIONS Neighbouring areas and a mosaic of local habitats shaped the palm flora of New Caledonia, and the island played a significant role in generating palm diversity across the Pacific region. This new spatio-temporal framework will enable population-level ecological and genetic studies to unpick the mechanisms underpinning New Caledonian palm endemism.
Collapse
Affiliation(s)
- Victor Pérez-Calle
- Department of Biology, Memorial University of Newfoundland, St John’s, Newfoundland A1B 3X9, Canada
| | | | | | - Yohan Pillon
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
| | | | | |
Collapse
|
7
|
Xue B, Huang E, Zhao G, Wei R, Song Z, Zhang X, Yao G. 'Out of Africa' origin of the pantropical staghorn fern genus Platycerium (Polypodiaceae) supported by plastid phylogenomics and biogeographical analysis. ANNALS OF BOTANY 2024; 133:697-710. [PMID: 38230804 PMCID: PMC11082476 DOI: 10.1093/aob/mcae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND AND AIMS The staghorn fern genus Platycerium is one of the most commonly grown ornamental ferns, and it evolved to occupy a typical pantropical intercontinental disjunction. However, species-level relationships in the genus have not been well resolved, and the spatiotemporal evolutionary history of the genus also needs to be explored. METHODS Plastomes of all the 18 Platycerium species were newly sequenced. Using plastome data, we reconstructed the phylogenetic relationships among Polypodiaceae members with a focus on Platycerium species, and further conducted molecular dating and biogeographical analyses of the genus. KEY RESULTS The present analyses yielded a robustly supported phylogenetic hypothesis of Platycerium. Molecular dating results showed that Platycerium split from its sister genus Hovenkampia ~35.2 million years ago (Ma) near the Eocene-Oligocene boundary and began to diverge ~26.3 Ma during the late Oligocene, while multiple speciation events within Platycerium occurred during the middle to late Miocene. Biogeographical analysis suggested that Platycerium originated in tropical Africa and then dispersed eastward to southeast Asia-Australasia and westward to neotropical areas. CONCLUSIONS Our analyses using a plastid phylogenomic approach improved our understanding of the species-level relationships within Platycerium. The global climate changes of both the Late Oligocene Warming and the cooling following the mid-Miocene Climate Optimum may have promoted the speciation of Platycerium, and transoceanic long-distance dispersal is the most plausible explanation for the pantropical distribution of the genus today. Our study investigating the biogeographical history of Platycerium provides a case study not only for the formation of the pantropical intercontinental disjunction of this fern genus but also the 'out of Africa' origin of plant lineages.
Collapse
Affiliation(s)
- Bine Xue
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Erfeng Huang
- Guangxi Nanning Roy Garden Co., Ltd, Nanning 530227, China
| | - Guohua Zhao
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhuqiu Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xianchun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Gang Yao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Lin Y, Yao G, Huang C, Chao Z, Tian E. Molecular evidence provides new insights into the evolutionary origin of an ancient traditional Chinese medicine, the domesticated "Baizhi". FRONTIERS IN PLANT SCIENCE 2024; 15:1388586. [PMID: 38779069 PMCID: PMC11110842 DOI: 10.3389/fpls.2024.1388586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Introduction "Baizhi" is a famous herbal medicine in China, and it includes four landraces named as 'Hangbaizhi', 'Chuanbaizhi', 'Qibaizhi', and 'Yubaizhi'. Long-term artificial selection had caused serious degradation of these germplasms. Determining the wild progenitor of the landraces would be benefit for their breed improvements. Previous studies have suggested Angelica dahurica var. dahurica, A. dahurica var. formosana, or A. porphyrocaulis as potential candidates, but the conclusion remains uncertain, and their phylogenetic relationships are still in controversy. Methods In this study, the genetic variation and phylogenetic analyses of these species and four landraces were conducted on the basis of both the nrITS and plastome datasets. Results Genetic variation analysis showed that all 8 population of four landraces shared only one ITS haplotype, meanwhile extremely low variation occurred within 6 population at plastid genome level. Both datasets supported the four landraces might be originated from a single wild germplasm. Phylogenetic analyses with both datasets revealed largely consistent topology using Bayesian inference and Maximum likelihood methods. Samples of the four landraces and all wild A. dahurica var. dahurica formed a highly supported monophyletic clade, and then sister to the monophyly clade comprised by samples of A. porphyrocaulis, while four landraces were clustered into one clade, which further clustered with a mixed branches of A. porphyrocaulis and A. dahurica var. dahurica to form sister branches for plastid genomes. Furthermore, the monophyletic A. dahurica var. formosana was far distant from the A. dahurica var. dahurica-"Baizhi" clade in Angelica phylogeny. Such inferences was also supported by the evolutionary patterns of nrITS haplotype network and K2P genetic distances. The outcomes indicated A. dahurica var. dahurica is most likely the original plant of "Baizhi". Discussion Considering of phylogenetic inference and evolutionary history, the species-level status of A. dahurica var. formosana should be accepted, and the taxonomic level and phylgenetic position of A. porphyrocaulis should be further confirmed. This study preliminarily determined the wild progenitor of "Baizhi" and clarified the phylogenetic relationships among A. dahurica var. dahurica, A. dahurica var. formosana and A. porphyrocaulis, which will provide scientific guidance for wild resources protections and improvement of "Baizhi".
Collapse
Affiliation(s)
- Yingyu Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Gang Yao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chunxiu Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Enwei Tian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Wu W, Feng X, Wang N, Shao S, Liu M, Si F, Chen L, Jin C, Xu S, Guo Z, Zhong C, Shi S, He Z. Genomic analysis of Nypa fruticans elucidates its intertidal adaptations and early palm evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:824-843. [PMID: 38372488 DOI: 10.1111/jipb.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.
Collapse
Affiliation(s)
- Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, 511462, China
| | - Nan Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fa Si
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Linhao Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanfeng Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
10
|
Li T, Zhang S, Deng Y, Li Y. Comparative Analysis of Chloroplast Genomes for the Genus Manglietia Blume (Magnoliaceae): Molecular Structure and Phylogenetic Evolution. Genes (Basel) 2024; 15:406. [PMID: 38674341 PMCID: PMC11048997 DOI: 10.3390/genes15040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Manglietia Blume, belonging to the Magnoliaceae family and mainly distributed in tropical and subtropical regions of Asia, has great scientific and economic value. In this study, we employed next-generation sequencing followed by de novo assembly to investigate the adaptive evolution of Manglietia using plastid genetic information. We newly sequenced the complete or nearly complete plastomes of four Manglietia species (Manglietia aromatica, Manglietia calcarea, Manglietia kwangtungensis, and Manglietia glauca) and conducted comparative analysis with seventeen published plastomes to examine the evolutionary pattern within this genus. The plastomes of these five newly sequenced Manglietia species range from 157,093 bp (M. calcarea2) to 160,493 bp (M. kwangtungensis), all exhibiting circular structures when mapped. Nucleotide diversity was observed across the plastomes, leading us to identify 13 mutational hotspot regions, comprising eight intergenic spacer regions and five gene regions. Our phylogenetic analyses based on 77 protein-coding genes generated phylogenetic relationships with high support and resolution for Manglietia. This genus can be divided into three clades, and the previously proposed infrageneric classifications are not supported by our studies. Furthermore, the close affinity between M. aromatica and M. calcarea is supported by the present work, and further studies are necessary to conclude the taxonomic treatment for the latter. These results provide resources for the comparative plastome, breeding, and plastid genetic engineering of Magnoliaceae and flowering plants.
Collapse
Affiliation(s)
- Tingzhang Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (T.L.); (S.Z.)
| | - Shuangyu Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (T.L.); (S.Z.)
| | - Yunfei Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuling Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (T.L.); (S.Z.)
| |
Collapse
|
11
|
Zhang H, Liu P, Zhang Y, Sun H, Wang Y, Gao Z, Liu X. Chloroplast genome of Calamus tetradactylus revealed rattan phylogeny. BMC Genom Data 2024; 25:34. [PMID: 38528505 PMCID: PMC10962098 DOI: 10.1186/s12863-024-01222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Calamus tetradactylus, a species primarily distributed in Vietnam, Laos, and southern China, is highly valued for its utilization as a small-diameter rattan material. While its physical and mechanical properties have been extensively studied, the genomic characteristics of C. tetradactylus remain largely unexplored. RESULTS To gain a better understanding of its chloroplast genomic features and evolutionary relationships, we conducted sequencing and assembly of the chloroplast genome of C. tetradactylus. The complete chloroplast genome exhibited the typical highly conserved quartile structure, with specific variable regions identified in the single-copy region (like psbF-psbE, π = 0.10327, ndhF-rpl32, π = 0.10195), as well as genes such as trnT-GGU (π = 0.05764) and ycf1 (π = 0.03345) and others. We propose that these regions and genes hold potential as markers for species identification. Furthermore, phylogenetic analysis revealed that C. tetradactylus formed a distinct clade within the phylogenetic tree, alongside other Calamus species, and C. tetradactylus was most closely related to C. walkeri, providing support for the monophyly of the genus. CONCLUSION The analysis of the chloroplast genome conducted in this study provides valuable insights that can contribute to the improvement of rattan breeding programs and facilitate sustainable development in the future.
Collapse
Affiliation(s)
| | - Peng Liu
- BGI Research, Beijing, 102601, China
| | - Yi Zhang
- School of nursing, Chongqing Medical and Pharmaceutical College, P. R, Chongqing, China
| | - Huayu Sun
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yue Wang
- BGI Research, Beijing, 102601, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Xin Liu
- BGI Research, Beijing, 102601, China.
| |
Collapse
|
12
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
13
|
Remizowa MV, Sokoloff DD. Patterns of Carpel Structure, Development, and Evolution in Monocots. PLANTS (BASEL, SWITZERLAND) 2023; 12:4138. [PMID: 38140465 PMCID: PMC10748379 DOI: 10.3390/plants12244138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The phenomenon of heterochrony, or shifts in the relative timing of ontogenetic events, is important for understanding many aspects of plant evolution, including applied issues such as crop yield. In this paper, we review heterochronic shifts in the evolution of an important floral organ, the carpel. The carpels, being ovule-bearing organs, facilitate fertilisation, seed, and fruit formation. It is the carpel that provides the key character of flowering plants, angiospermy. In many angiosperms, a carpel has two zones: proximal ascidiate and distal plicate. When carpels are free (apocarpous gynoecium), the plicate zone has a ventral slit where carpel margins meet and fuse during ontogeny; the ascidiate zone is sac-like from inception and has no ventral slit. When carpels are united in a syncarpous gynoecium, a synascidiate zone has as many locules as carpels, whereas a symplicate zone is unilocular, at least early in ontogeny. In ontogeny, either the (syn)ascidiate or (sym)plicate zone is first to initiate. The two developmental patterns are called early and late peltation, respectively. In extreme cases, either the (sym)plicate or (syn)ascidiate zone is completely lacking. Here, we discuss the diversity of carpel structure and development in a well-defined clade of angiosperms, the monocotyledons. We conclude that the common ancestor of monocots had carpels with both zones and late peltation. This result was found irrespective of the use of the plastid or nuclear phylogeny. Early peltation generally correlates with ovules belonging to the (syn)ascidiate zone, whereas late peltation is found mostly in monocots with a fertile (sym)plicate zone.
Collapse
|
14
|
Li J, Du Y, Xie L, Jin X, Zhang Z, Yang M. Comparative plastome genomics and phylogenetic relationships of the genus Trollius. FRONTIERS IN PLANT SCIENCE 2023; 14:1293091. [PMID: 38046610 PMCID: PMC10690957 DOI: 10.3389/fpls.2023.1293091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Trollius, a genus in the Ranunculaceae family, has significant medicinal and ornamental value. It is widely distributed in China with 16 different species accepted. However, due to the lack of enough samples and information sites, the molecular phylogenetic relationships of Trollius have been unresolved till now. Here we sequenced, assembled and annotated the plastomes of 16 Trollius species to investigate their genomic characteristics, inverted repeat (IR) boundaries, sequence repeats, and hypervariable loci. In addition, the phylogenetic relationships of this genus was reconstructed based on the whole plastomes and the protein-coding sequences data-sets. The plastomes of Trollius ranged between 159,597 bp and 160,202 bp in length, and contained 113 unique genes, including 79 protein coding, 30 tRNA, and 4 rRNA. The IR boundaries were relatively conserved within the genus Trollius. 959 simple sequence repeats and 657 long sequence repeats were detected in the Trollius plastomes. We identified 12 highly polymorphic loci (Pi > 0.0115) that can be used as plastid markers in molecular identification and phylogenetic investigation of the genus. Besides, Trollius was a monophyletic group with the earliest divergence clade being Trollius lilacinus Bunge, and the remaining species were divided into two strongly-supported clades. The phylogeny in our study supported the traditional classification systems based on the color of sepal, but not the previous classification system based on the types and relative lengths of the nectaries, and distribution. The genomic resources provided in our study can be used in the taxonomy of the genus Trollius, promoting the development and utilization of this genus.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yan Du
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Lei Xie
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiaohua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhirong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Meiqing Yang
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
15
|
Liu H, Hou Z, Xu L, Ma Q, Wei M, Tembrock LR, Zhang S, Wu Z. Comparative analysis of organellar genomes between diploid and tetraploid Chrysanthemum indicum with its relatives. FRONTIERS IN PLANT SCIENCE 2023; 14:1228551. [PMID: 37662149 PMCID: PMC10471889 DOI: 10.3389/fpls.2023.1228551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023]
Abstract
Chrysanthemum indicum, a species native to Eastern Asia is well known as one of the progenitor species of the cultivated Chrysanthemum which is grown for its ornamental and medicinal value. Previous genomic studies on Chrysanthemum have largely ignored the dynamics of plastid genome (plastome) and mitochondria genome (mitogenome) evolution when analyzing this plant lineage. In this study, we sequenced and assembled the plastomes and mitogenomes of diploid and tetraploid C. indicum as well as the morphologically divergent variety C. indicum var. aromaticum. We used published data from 27 species with both plastome and mitogenome complete sequences to explore differences in sequence evolution between the organellar genomes. The size and structure of organellar genome between diploid and tetraploid C. indicum were generally similar but the tetraploid C. indicum and C. indicum var. aromaticum were found to contain unique sequences in the mitogenomes which also contained previously undescribed open reading frames (ORFs). Across Chrysanthemum mitogenome structure varied greatly but sequences transferred from plastomes in to the mitogenomes were conserved. Finally, differences observed between mitogenome and plastome gene trees may be the result of the difference in the rate of sequence evolution between genes in these two genomes. In total the findings presented here greatly expand the resources for studying Chrysanthemum organellar genome evolution with possible applications to conservation, breeding, and gene banking in the future.
Collapse
Affiliation(s)
- Huihui Liu
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lei Xu
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Qing Ma
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Min Wei
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Shuo Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| |
Collapse
|
16
|
Xue B, Song Z, Cai J, Ma Z, Huang J, Li Y, Yao G. Phylogenetic analysis and temporal diversification of the tribe Alsineae (Caryophyllaceae) with the description of three new genera, Hesperostellaria, Reniostellaria and Torreyostellaria. FRONTIERS IN PLANT SCIENCE 2023; 14:1127443. [PMID: 37416878 PMCID: PMC10321415 DOI: 10.3389/fpls.2023.1127443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Alsineae are one of the most taxonomically difficult tribes in Caryophyllaceae and consist of over 500 species distributed in the northern temperate zone. Recent phylogenetic results have improved our understanding on the evolutionary relationships among Alsineae members. Nevertheless, there are still some unresolved taxonomic and phylogenetic problems at the generic level, and the evolutionary history of major clades within the tribe was unexplored to date. In this study, we carried out phylogenetic analyses and divergence time estimation of Alsineae using the nuclear ribosomal internal transcribed spacer (nrITS) and four plastid regions (matK, rbcL, rps16, trnL-F). The present analyses yielded a robustly supported phylogenetic hypothesis of the tribe. Our results showed that the monophyletic Alsineae are strongly supported to be the sister of Arenarieae, and the inter-generic relationships within Alsineae were mostly resolved with strong support. Both molecular phylogenetic and morphological evidence supported the Asian species Stellaria bistylata and the two North American species Pseudostellaria jamesiana and Stellaria americana all should be recognized as new monotypic genera respectively, and three new genera Reniostellaria, Torreyostellaria, and Hesperostellaria were thereby proposed here. Additionally, molecular and morphological evidence also supported the proposal of the new combination Schizotechium delavayi. Nineteen genera were accepted within Alsineae and a key to these genera was provided. Molecular dating analysis suggested that Alsineae splitted from its sister tribe at ca. 50.2 million-years ago (Ma) during the early Eocene and began to diverge at ca. 37.9 Ma during the late Eocene, and divergent events within Alsineae occurred mainly since the late Oligocene. Results from the present study provide insights into the historical assembly of herbaceous flora in northern temperate regions.
Collapse
Affiliation(s)
- Bine Xue
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zhuqiu Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Cai
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhonghui Ma
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, China
| | - Jiuxiang Huang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuling Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Gang Yao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|