1
|
Zhang M, Yancey C, Zhang C, Wang J, Ma Q, Yang L, Schulman R, Han D, Tan W. A DNA circuit that records molecular events. SCIENCE ADVANCES 2024; 10:eadn3329. [PMID: 38578999 PMCID: PMC10997190 DOI: 10.1126/sciadv.adn3329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Characterizing the relative onset time, strength, and duration of molecular signals is critical for understanding the operation of signal transduction and genetic regulatory networks. However, detecting multiple such molecules as they are produced and then quickly consumed is challenging. A MER can encode information about transient molecular events as stable DNA sequences and are amenable to downstream sequencing or other analysis. Here, we report the development of a de novo molecular event recorder that processes information using a strand displacement reaction network and encodes the information using the primer exchange reaction, which can be decoded and quantified by DNA sequencing. The event recorder was able to classify the order at which different molecular signals appeared in time with 88% accuracy, the concentrations with 100% accuracy, and the duration with 75% accuracy. This simultaneous and highly programmable multiparameter recording could enable the large-scale deciphering of molecular events such as within dynamic reaction environments, living cells, or tissues.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Colin Yancey
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chao Zhang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Intellinosis Biotech Co. Ltd., Shanghai, 201112, China
| | - Junyan Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qian Ma
- Intellinosis Biotech Co. Ltd., Shanghai, 201112, China
| | - Linlin Yang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Rebecca Schulman
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Da Han
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
2
|
She H, Hao Y, Song G, Luo X, Lei F, Zhai W, Qu Y. Gene expression plasticity followed by genetic change during colonization in a high-elevation environment. eLife 2024; 12:RP86687. [PMID: 38470231 DOI: 10.7554/elife.86687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Phenotypic plasticity facilitates organismal invasion of novel environments, and the resultant phenotypic change may later be modified by genetic change, so called 'plasticity first.' Herein, we quantify gene expression plasticity and regulatory adaptation in a wild bird (Eurasian Tree Sparrow) from its original lowland (ancestral stage), experimentally implemented hypoxia acclimation (plastic stage), and colonized highland (colonized stage). Using a group of co-expressed genes from the cardiac and flight muscles, respectively, we demonstrate that gene expression plasticity to hypoxia tolerance is more often reversed than reinforced at the colonized stage. By correlating gene expression change with muscle phenotypes, we show that colonized tree sparrows reduce maladaptive plasticity that largely associated with decreased hypoxia tolerance. Conversely, adaptive plasticity that is congruent with increased hypoxia tolerance is often reinforced in the colonized tree sparrows. Genes displaying large levels of reinforcement or reversion plasticity (i.e. 200% of original level) show greater genetic divergence between ancestral and colonized populations. Overall, our work demonstrates that gene expression plasticity at the initial stage of high-elevation colonization can be reversed or reinforced through selection-driven adaptive modification.
Collapse
Affiliation(s)
- Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xu Luo
- Faculty of Biodiversity and Conservation, Southwest Forestry University, Kunming, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Wang M, Huang L, Kou Y, Li D, Hu W, Fan D, Cheng S, Yang Y, Zhang Z. Differentiation of Morphological Traits and Genome-Wide Expression Patterns between Rice Subspecies Indica and Japonica. Genes (Basel) 2023; 14:1971. [PMID: 37895320 PMCID: PMC10606143 DOI: 10.3390/genes14101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Changes in gene expression patterns can lead to the variation of morphological traits. This phenomenon is particularly evident in recent evolution events such as crop domestication and responses to environmental stress, where alterations in expression levels can efficiently give rise to domesticated syndromes and adaptive phenotypes. Rice (Oryza sativa L.), one of the world's most crucial cereal crops, comprises two morphologically distinct subspecies, Indica and Japonica. To investigate the morphological divergence between these two rice subspecies, this study planted a total of 315 landrace individuals of both Indica and Japonica under identical cultivation conditions. Out of the 16 quantitative traits measured in this study, 12 exhibited significant differences between the subspecies. To determine the genetic divergence between Indica and Japonica at the whole-genome sequence level, we constructed a phylogenetic tree using a resequencing dataset encompassing 95 rice landrace accessions. The samples formed two major groups that neatly corresponded to the two subspecies, Indica and Japonica. Furthermore, neighbor-joining (NJ) trees based on the expression quantity of effectively expressed genes (EEGs) across five different tissues categorized 12 representative samples into two major clades aligning with the two subspecies. These results imply that divergence in genome-wide expression levels undergoes stabilizing selection under non-stressful conditions, with evolutionary trends in expression levels mirroring sequence variation levels. This study further supports the pivotal role of changes in genome-wide expression regulation in the divergence of the two rice subspecies, Indica and Japonica.
Collapse
Affiliation(s)
- Meixia Wang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
| | - Lei Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China;
| | - Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Danqi Li
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China
| | - Wan Hu
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China
| | - Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
| | - Shanmei Cheng
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
| | - Yi Yang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
| | - Zhiyong Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| |
Collapse
|