1
|
Rosen GA, Kirsch D, Nicks R, Kelley H, Mathias R, Cormier KA, Kubilus CA, Dec B, Stein TD, Alvarez VE, Alosco ML, McKee AC, Huber BR. SHARD: an improved method for staining and visualizing multiplex immunofluorescence in optically cleared postmortem human brain tissue. Front Neurosci 2024; 18:1474617. [PMID: 39445075 PMCID: PMC11496292 DOI: 10.3389/fnins.2024.1474617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Postmortem human brain tissue is a critical resource for studying neurodegenerative disease, providing critical insights into cellular morphology, pathology, and network connectivity. To improve standard microscopy and enable high-resolution, three-dimensional (3D) images of tissues at the subcellular level, tissue-clearing methods have been developed. These 3D images allow for the analysis of large regions of interest and can be used to study structural and spatial changes that occur during neurodegeneration. Additionally, 3D imaging facilitates the visualization of whole-cell morphology, especially in cells with long processes that would otherwise be truncated in single-plane images. Human brain tissue is especially challenging for tissue clearing due to the abundance of lipids in myelin and the need for optimal fixation and low postmortem intervals. Formaldehyde-based fixatives, commonly used in preserving tissue, hinder antibody binding by crosslinking important antibody epitopes, and fluorescent microscopy requires the incorporation of fluorescent labels through passive diffusion or electrophoresis. Recent studies have focused on optimally fixed human brain tissue with short postmortem intervals, limiting the general applicability of these methods. To address these challenges, we developed SHARD (SHIELD, antigen retrieval, and delipidation), a simple and widely applicable method for clearing and labeling human brain tissue, which can be applied to long-term banked human brain tissue preserved in formaldehyde. SHARD is a novel addition to the SHIELD tissue clarification method, combining antigen retrieval, tissue clearing, and staining of 200-μm sections from long-term banked human brain tissue. The SHARD method is effective for postmortem intervals (PMIs) ranging from 10 to 72 h in multiple neurodegenerative diseases and control samples. In this study, we demonstrate that the SHARD method significantly enhances the immunostaining of glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal marker. Overall, the combination of antigen retrieval and tissue delipidation holds great potential for achieving detailed 3D immunostaining in long-term formaldehyde-fixed postmortem human brain tissue, opening new avenues for research and discovery.
Collapse
Affiliation(s)
- Grace A. Rosen
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
| | - Daniel Kirsch
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Hunter Kelley
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Rebecca Mathias
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Kerry A. Cormier
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Caroline A. Kubilus
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Bryan Dec
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Thor D. Stein
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Victor E. Alvarez
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Michael L. Alosco
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- Department of Neurology, Boston Medical Center, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Ann C. McKee
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Bertrand R. Huber
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| |
Collapse
|
2
|
Delling JP, Bauer HF, Gerlach-Arbeiter S, Schön M, Jacob C, Wagner J, Pedro MT, Knöll B, Boeckers TM. Combined expansion and STED microscopy reveals altered fingerprints of postsynaptic nanostructure across brain regions in ASD-related SHANK3-deficiency. Mol Psychiatry 2024; 29:2997-3009. [PMID: 38649753 PMCID: PMC11449788 DOI: 10.1038/s41380-024-02559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Synaptic dysfunction is a key feature of SHANK-associated disorders such as autism spectrum disorder, schizophrenia, and Phelan-McDermid syndrome. Since detailed knowledge of their effect on synaptic nanostructure remains limited, we aimed to investigate such alterations in ex11|SH3 SHANK3-KO mice combining expansion and STED microscopy. This enabled high-resolution imaging of mosaic-like arrangements formed by synaptic proteins in both human and murine brain tissue. We found distinct shape-profiles as fingerprints of the murine postsynaptic scaffold across brain regions and genotypes, as well as alterations in the spatial and molecular organization of subsynaptic domains under SHANK3-deficient conditions. These results provide insights into synaptic nanostructure in situ and advance our understanding of molecular mechanisms underlying synaptic dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jan Philipp Delling
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, 89081, Germany.
- Max Planck Institute of Psychiatry, Munich, 80804, Germany.
| | | | | | - Michael Schön
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, 89081, Germany
| | - Christian Jacob
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, 89081, Germany
| | - Jan Wagner
- Department of Neurology, Ulm University, Ulm, 89081, Germany
| | | | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Ulm, 89081, Germany
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, 89081, Germany.
- Ulm Site, DZNE, Ulm, 89081, Germany.
| |
Collapse
|
3
|
Böckers A, Schurr L, Schön M, Scholl T, Böckers TM, Steinestel K, Arndt A. Predictive molecular pathology after prolonged fixation: A study on tissue from anatomical body donors. Exp Mol Pathol 2024; 137:104899. [PMID: 38761540 DOI: 10.1016/j.yexmp.2024.104899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Histopathological assessment of tissue samples after prolonged formalin fixation has been described previously, but currently there is only limited knowledge regarding the feasibility of molecular pathology on such tissue. In this pilot study, we tested routine molecular pathology methods (DNA isolation, DNA pyrosequencing/next-generation sequencing, DNA methylation analysis, RT-PCR, clonality analysis and fluorescence in situ hybridization) on tissue samples from 11 tumor entities as well as non-neoplastic brain tissue from 43 body donors during the gross anatomy course at Ulm University (winter semester 2019/20 and 2020/21). The mean post mortem interval until fixation was 2.5 ± 1.6 days (range, 1-6 days). Fixation was performed with aqueous formaldehyde solution (formalin, 1.5-2%). The mean storage time of body donors was 12.8 ± 5.6 months (range, 7-25 months). While most diagnostic methods were successful, samples showed significant variability in DNA quality and evaluability. DNA pyrosequencing as well as next-generation sequencing was successful in all investigated samples. Methylation analyses were partially not successful in some extend due to limited intact DNA yield for these analyses. Taken together, the use of prolonged formalin-fixed tissue samples from body donors offers new avenues in research and education, as these samples could be used for morpho-molecular studies and the establishment of biobanks, especially for tissue types that cannot be preserved and studied in vivo. Pathological ward rounds, sample collection, and histopathological and molecular workup have been integrated in the gross anatomy course in Ulm as an integral part of the curriculum, linking anatomy and pathology and providing medical students early insight into the broad field of (molecular) pathology.
Collapse
Affiliation(s)
- Anja Böckers
- Institute for Anatomy and Cell Biology, Medical Faculty, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Leon Schurr
- Institute for Anatomy and Cell Biology, Medical Faculty, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Medical Faculty, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tatjana Scholl
- Institute of Pathology and Molecular Pathology, Federal Army Hospital, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Tobias M Böckers
- Institute for Anatomy and Cell Biology, Medical Faculty, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Federal Army Hospital, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Annette Arndt
- Institute of Pathology and Molecular Pathology, Federal Army Hospital, Oberer Eselsberg 40, 89081 Ulm, Germany.
| |
Collapse
|
4
|
Lin YH, Wang LW, Chen YH, Chan YC, Hu SH, Wu SY, Chiang CS, Huang GJ, Yang SD, Chu SW, Wang KC, Lin CH, Huang PH, Cheng HJ, Chen BC, Chu LA. Revealing intact neuronal circuitry in centimeter-sized formalin-fixed paraffin-embedded brain. eLife 2024; 13:RP93212. [PMID: 38775133 PMCID: PMC11111220 DOI: 10.7554/elife.93212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.
Collapse
Affiliation(s)
- Ya-Hui Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
- Brain Research Center, National Tsing Hua UniversityHsinchuTaiwan
| | - Li-Wen Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
- Brain Research Center, National Tsing Hua UniversityHsinchuTaiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Yi-Chieh Chan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
| | - Sheng-Yan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
| | - Guan-Jie Huang
- Department of Physics, National Taiwan UniversityTaipeiTaiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua UniversityHsinchuTaiwan
| | - Shi-Wei Chu
- Department of Physics, National Taiwan UniversityTaipeiTaiwan
| | - Kuo-Chuan Wang
- Department of Neurosurgery, National Taiwan University HospitalTaipeiTaiwan
| | - Chin-Hsien Lin
- Department of Neurosurgery, National Taiwan University HospitalTaipeiTaiwan
| | - Pei-Hsin Huang
- Department of Pathology, National Taiwan University HospitalTaipeiTaiwan
| | | | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia SinicaTaipeiTaiwan
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
- Brain Research Center, National Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
5
|
McKenzie AT, Nnadi O, Slagell KD, Thorn EL, Farrell K, Crary JF. Fluid preservation in brain banking: a review. FREE NEUROPATHOLOGY 2024; 5:10. [PMID: 38690035 PMCID: PMC11058410 DOI: 10.17879/freeneuropathology-2024-5373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Fluid preservation is nearly universally used in brain banking to store fixed tissue specimens for future research applications. However, the effects of long-term immersion on neural circuitry and biomolecules are not well characterized. As a result, there is a need to synthesize studies investigating fluid preservation of brain tissue. We searched PubMed and other databases to identify studies measuring the effects of fluid preservation in nervous system tissue. We categorized studies based on the fluid preservative used: formaldehyde solutions, buffer solutions, alcohol solutions, storage after tissue clearing, and cryoprotectant solutions. We identified 91 studies containing 197 independent observations of the effects of long-term storage on cellular morphology. Most studies did not report any significant alterations due to long-term storage. When present, the most frequent alteration was decreased antigenicity, commonly attributed to progressive crosslinking by aldehydes that renders biomolecules increasingly inaccessible over time. To build a mechanistic understanding, we discuss biochemical aspects of long-term fluid preservation. A subset of lipids appears to be chemical altered or extracted over time due to incomplete retention in the crosslinked gel. Alternative storage fluids mitigate the problem of antigen masking but have not been extensively characterized and may have other downsides. We also compare fluid preservation to cryopreservation, paraffin embedding, and resin embedding. Overall, existing evidence suggests that fluid preservation provides maintenance of neural architecture for decades, including precise structural details. However, to avoid the well-established problem of overfixation caused by storage in high concentration formaldehyde solutions, fluid preservation procedures can use an initial fixation step followed by an alternative long-term storage fluid. Further research is warranted on optimizing protocols and characterizing the generalizability of the storage artifacts that have been identified.
Collapse
Affiliation(s)
| | - Oge Nnadi
- Brain Preservation Foundation, Ashburn, Virginia, USA
| | - Kat D. Slagell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma L. Thorn
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kurt Farrell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F. Crary
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Woelfle S, Pedro MT, Wagner J, Schön M, Boeckers TM. Expression profiles of the autism-related SHANK proteins in the human brain. BMC Biol 2023; 21:254. [PMID: 37953224 PMCID: PMC10641957 DOI: 10.1186/s12915-023-01712-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND SHANKs are major scaffolding proteins at postsynaptic densities (PSDs) in the central nervous system. Mutations in all three family members have been associated with neurodevelopmental disorders such as autism spectrum disorders (ASDs). Despite the pathophysiological importance of SHANK2 and SHANK3 mutations in humans, research on the expression of these proteins is mostly based on rodent model organisms. RESULTS In the present study, cellular and neuropil SHANK2 expression was analyzed by immunofluorescence (IF) staining of post mortem human brain tissue from four male individuals (19 brain regions). Mouse brains were analyzed in comparison to evaluate the degree of phylogenetic conservation. Furthermore, SHANK2 and SHANK3 isoform patterns were compared in human and mouse brain lysates. While isoform expression and subcellular distribution were largely conserved, differences in neuropil levels of SHANK2 were found by IF staining: Maximum expression was concordantly measured in the cerebellum; however, higher SHANK2 expression was detected in the human brainstem and thalamus when compared to mice. One of the lowest SHANK2 levels was found in the human amygdala, a moderately expressing region in mouse. Quantification of SHANK3 IF in mouse brains unveiled a distribution comparable to humans. CONCLUSIONS In summary, these data show that the overall expression pattern of SHANK is largely conserved in defined brain regions; however, differences do exist, which need to be considered in the translation of rodent studies. The summarized expression patterns of SHANK2 and SHANK3 should serve as a reference for future studies.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Maria T Pedro
- Department of Neurosurgery, Ulm University, Campus Günzburg, Lindenallee 2, 89312, Günzburg, Germany
| | - Jan Wagner
- Department of Neurology, Ulm University and Universitäts- and Rehabilitationskliniken Ulm, 89081, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- Deutsches Zentrum Für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany.
| |
Collapse
|