1
|
Xu Y, Du J, Zhang K, Li J, Zou F, Li X, Meng Y, Chen Y, Tao L, Zhao F, Ma L, Shen B, Zhou D, Sun Y, Yan G, Zhu C. The Dual Resistance Mechanism of CYP325G4 and CYP6AA9 in Culex pipiens pallens Legs According to Transcriptome and Proteome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27150-27162. [PMID: 39604078 DOI: 10.1021/acs.jafc.4c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mosquitoes within the Culex pipiens complex play a crucial role in human disease transmission. Insecticides, especially pyrethroids, are used to control these vectors. Mosquito legs are the main entry point and barrier for insecticides to gain their neuronal targets. However, the resistance mechanism in mosquito legs is unclear. Herein, we employed transcriptomic analyses and isobaric tags for relative and absolute quantitation techniques to investigate the resistance mechanism, focusing on Cx. pipiens legs. We discovered 2346 differentially expressed genes (DEGs) between deltamethrin-resistant (DR) and deltamethrin-sensitive (DS) mosquito legs, including 41 cytochrome P450 genes. In the same comparison, we identified 228 differentially expressed proteins (DEPs), including six cytochrome P450 proteins. Combined transcriptome and proteome analysis revealed only two upregulated P450 genes, CYP325G4 and CYP6AA9. The main clusters of DEGs and DEPs were associated with metabolic processes, such as cytochrome P450-mediated metabolism of drugs and xenobiotics. Transcription analysis revealed high CYP325G4 and CYP6AA9 expression in the DR strain at 72 h posteclosion compared with that in the DS strain, particularly in the legs. Mosquitoes knocked down for CYP325G4 were more sensitive to deltamethrin than the controls. CYP325G4 knockdown reduced the expression of several chlorinated hydrocarbon (CHC)-related genes, which altered the cuticle thickness and structure. Conversely, CYP6AA9 knockdown increased CHC gene expression without altering cuticle thickness and structure. P450 activity analysis demonstrated that CYP325G4 and CYP6AA9 contributed to metabolic resistance in the midgut and legs. This study identified CYP325G4 as a novel mosquito deltamethrin resistance factor, being involved in both metabolic and cuticular resistance mechanisms. The previously identified CYP6AA9 was investigated for its involvement in metabolic resistance and potential cuticular resistance in mosquito legs. These findings enhance our comprehension of resistance mechanisms, identifying P450s as promising targets for the future management of mosquito vector resistance, and laying a theoretical groundwork for mosquito resistance management.
Collapse
Affiliation(s)
- Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Kewei Zhang
- Department of Population Health & Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, California 92697, United States
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Feifei Zou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xixi Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufen Meng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fengming Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Guiyun Yan
- Department of Population Health & Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, California 92697, United States
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
2
|
Auradkar A, Corder RM, Marshall JM, Bier E. A self-eliminating allelic-drive reverses insecticide resistance in Drosophila leaving no transgene in the population. Nat Commun 2024; 15:9961. [PMID: 39551783 PMCID: PMC11570635 DOI: 10.1038/s41467-024-54210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
Insecticide resistance (IR) poses a significant global challenge to public health and welfare. Here, we develop a locally-acting unitary self-eliminating allelic-drive system, inserted into the Drosophila melanogaster yellow (y) locus. The drive cassette encodes both Cas9 and a single gRNA to bias inheritance of the favored wild-type (1014 L) allele over the IR (1014 F) variant of the voltage-gated sodium ion channel (vgsc) target locus. When enduring a fitness cost, this transiently-acting drive can increase the frequency of the wild-type allele to 100%, depending on its seeding ratio, before being eliminated from the population. However, in a fitness-neutral "hover" mode, the drive maintains a constant frequency in the population, completely converting IR alleles to wild-type, even at low initial seeding ratios.
Collapse
Affiliation(s)
- Ankush Auradkar
- Department of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
- Tata Institute for Genetics and Society, University of California San Diego, San Diego, CA, USA
| | - Rodrigo M Corder
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
- Divisions of Biostatistics and Epidemiology - School of Public Health, University of California, Berkeley, CA, USA
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology - School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA.
- Tata Institute for Genetics and Society, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
3
|
Uemura N, Itokawa K, Komagata O, Kasai S. Recent advances in the study of knockdown resistance mutations in Aedes mosquitoes with a focus on several remarkable mutations. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101178. [PMID: 38346494 DOI: 10.1016/j.cois.2024.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
The Aedes mosquito, which transmits the dengue fever virus and other viruses, has acquired resistance to pyrethroid insecticides in a naturally selective manner. Massive use of insecticides has led to the worldwide expansion of resistant populations. The major factor in pyrethroid resistance is knockdown resistance (kdr) caused by amino acid mutation(s) in the voltage-gated sodium channel, which is the target site of this insecticide group. Some kdr mutations can lead to a dramatic increase in resistance, and multiple mutations can increase the level of pyrethroid resistance by 10 to several-hundred. In this review, we summarize the kdr identified in Aedes mosquitoes with a focus on the recent advances in the study of kdr.
Collapse
Affiliation(s)
- Nozomi Uemura
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kentaro Itokawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Osamu Komagata
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|