1
|
Wang F, Zhao D, Xu WY, Liu Y, Sun H, Lu S, Ji Y, Jiang J, Chen Y, He Q, Gong C, Liu R, Su Z, Dong Y, Yan Z, Liu L. Blood leukocytes as a non-invasive diagnostic tool for thyroid nodules: a prospective cohort study. BMC Med 2024; 22:147. [PMID: 38561764 PMCID: PMC10986011 DOI: 10.1186/s12916-024-03368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.
Collapse
Affiliation(s)
- Feihang Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Danyang Zhao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Wang-Yang Xu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Yiying Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Huiyi Sun
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shanshan Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Qiye He
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | | | - Rui Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China.
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
2
|
Khosla D, Misra S, Chu PL, Guan P, Nada R, Gupta R, Kaewnarin K, Ko TK, Heng HL, Srinivasalu VK, Kapoor R, Singh D, Klanrit P, Sampattavanich S, Tan J, Kongpetch S, Jusakul A, Teh BT, Chan JY, Hong JH. Cholangiocarcinoma: Recent Advances in Molecular Pathobiology and Therapeutic Approaches. Cancers (Basel) 2024; 16:801. [PMID: 38398194 PMCID: PMC10887007 DOI: 10.3390/cancers16040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Cholangiocarcinomas (CCA) pose a complex challenge in oncology due to diverse etiologies, necessitating tailored therapeutic approaches. This review discusses the risk factors, molecular pathology, and current therapeutic options for CCA and explores the emerging strategies encompassing targeted therapies, immunotherapy, novel compounds from natural sources, and modulation of gut microbiota. CCA are driven by an intricate landscape of genetic mutations, epigenetic dysregulation, and post-transcriptional modification, which differs based on geography (e.g., for liver fluke versus non-liver fluke-driven CCA) and exposure to environmental carcinogens (e.g., exposure to aristolochic acid). Liquid biopsy, including circulating cell-free DNA, is a potential diagnostic tool for CCA, which warrants further investigations. Currently, surgical resection is the primary curative treatment for CCA despite the technical challenges. Adjuvant chemotherapy, including cisplatin and gemcitabine, is standard for advanced, unresectable, or recurrent CCA. Second-line therapy options, such as FOLFOX (oxaliplatin and 5-FU), and the significance of radiation therapy in adjuvant, neoadjuvant, and palliative settings are also discussed. This review underscores the need for personalized therapies and demonstrates the shift towards precision medicine in CCA treatment. The development of targeted therapies, including FDA-approved drugs inhibiting FGFR2 gene fusions and IDH1 mutations, is of major research focus. Investigations into immune checkpoint inhibitors have also revealed potential clinical benefits, although improvements in survival remain elusive, especially across patient demographics. Novel compounds from natural sources exhibit anti-CCA activity, while microbiota dysbiosis emerges as a potential contributor to CCA progression, necessitating further exploration of their direct impact and mechanisms through in-depth research and clinical studies. In the future, extensive translational research efforts are imperative to bridge existing gaps and optimize therapeutic strategies to improve therapeutic outcomes for this complex malignancy.
Collapse
Affiliation(s)
- Divya Khosla
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shagun Misra
- Department of Radiotherapy and Oncology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pek Lim Chu
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rajesh Gupta
- Department of GI Surgery, HPB, and Liver Transplantation, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Khwanta Kaewnarin
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 168583, Singapore
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Hong Lee Heng
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Vijay Kumar Srinivasalu
- Department of Medical Oncology, Mazumdar Shaw Medical Center, NH Health City Campus, Bommasandra, Bangalore 560099, India
| | - Rakesh Kapoor
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deepika Singh
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 168583, Singapore
| | - Poramate Klanrit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand
| | - Jing Tan
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sarinya Kongpetch
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Center Singapore, Singapore 168583, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Center, Singapore 168583, Singapore
| | - Jing Han Hong
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
3
|
Zhou Z, Liu J, Chen Y, Ren B, Wan S, Chen Y, He Y, Wei Q, Gao H, Liu L, Shen H. Genome-wide DNA methylation pattern in whole blood of patients with Hashimoto thyroiditis. Front Endocrinol (Lausanne) 2023; 14:1259903. [PMID: 38075038 PMCID: PMC10704911 DOI: 10.3389/fendo.2023.1259903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Background Hashimoto thyroiditis (HT), a prevalent autoimmune disorder, is not yet thoroughly understood, especially when it comes to the influence of epigenetics in its pathogenesis. The primary goal of this research was to probe the DNAm profile across the genome in the whole blood derived from patients suffering from HT. Method Using the Illumina 850K BeadChip, we conducted a genome-wide DNAm assessment on 10 matched pairs of HT sufferers and healthy individuals. Genes with differential methylation (DMGs) were identified and underwent functional annotation via the databases of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The transcriptional significance of potential epigenetic biomarker genes was corroborated through qRT-PCR. Results The DNAm profiling across the genome indicated an overall reduction in methylation in HT subjects in comparison with their healthy counterparts. We detected 283 DMPs (adjusted P < 0.05 and |Δβ| > 0.1), among which 152 exhibited hypomethylation and 131 demonstrated hypermethylation. Further analysis exposed a noteworthy concentration of hypermethylated DMPs in the 3´UTR, North Shore, and CpG islands, while there was a significant decrease in the Open Sea (all P < 0.001). The 283 DMPs were broadly distributed from chromosome 1 to 22, with chromosome 6 harboring the most DMPs (n = 51) and chromosome 12 carrying the most DMGs (n = 15). The SLFN12 gene, which presented with extreme hypomethylation in its promoter DMPs among HT patients, was identified as the epigenetic marker gene. Consequently, the SLFN12 mRNA expression was markedly upregulated in HT, displaying a negative relationship with its methylation levels. The area under curve (AUC) value for the SLFN12 gene among HT patients was 0.85 (sensitivity: 0.7, specificity: 0.7), a significant difference compared with healthy controls. The methylation levels of all DMPs in SLFN12 gene were negatively correlated with TSH and one CpG site (cg24470734) was positively assocciated with FT4. Conclusion This investigation presents an initial comprehensive DNAm blueprint for individuals with HT, which permits clear differentiation between HT subjects and normal controls through an epigenetic lens. The SLFN12 gene plays a pivotal role in the onset of HT, suggesting that the methylation status of this gene could serve as a potential epigenetic indicator for HT.
Collapse
Affiliation(s)
- Zheng Zhou
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinjin Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yun Chen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bingxuan Ren
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Siyuan Wan
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yao Chen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanhong He
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qiuyang Wei
- First Clinical Medical Department, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Second Department of Endocrinology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiyan Gao
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixiang Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongmei Shen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Chen X, Zhou S, Wang Y, Zheng L, Guan S, Wang D, Wang L, Guan X. Nanopore Single-molecule Analysis of Biomarkers: Providing Possible Clues to Disease Diagnosis. Trends Analyt Chem 2023; 162:117060. [PMID: 38106545 PMCID: PMC10722900 DOI: 10.1016/j.trac.2023.117060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic Covid-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.
Collapse
Affiliation(s)
- Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Ling Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sarah Guan
- Hinsdale Central High School, Hinsdale, IL 60521, USA
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
5
|
Xu L, Huang Z, Zeng Z, Li J, Xie H, Xie C. An integrative analysis of DNA methylation and gene expression to predict lung adenocarcinoma prognosis. Front Genet 2022; 13:970507. [PMID: 36105089 PMCID: PMC9465336 DOI: 10.3389/fgene.2022.970507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Abnormal DNA methylation of gene promoters is an important feature in lung adenocarcinoma (LUAD). However, the prognostic value of DNA methylation remains to be further explored. Objectives. We sought to explore DNA methylation characteristics and develop a quantifiable criterion related to DNA methylation to improve survival prediction for LUAD patients. Methods: Illumina Human Methylation450K array data, level 3 RNA-seq data and corresponding clinical information were obtained from TCGA. Cox regression analysis and the Akaike information criterion were used to construct the best-prognosis methylation signature. Receiver operating characteristic curve analysis was used to validate the prognostic ability of the DNA methylation-related feature score. qPCR was used to measure the transcription levels of the identified genes upon methylation. Results: We identified a set of DNA methylation features composed of 11 genes (MYEOV, KCNU1, SLC27A6, NEUROD4, HMGB4, TACR3, GABRA5, TRPM8, NLRP13, EDN3 and SLC34A1). The feature score, calculated based on DNA methylation features, was independent of tumor recurrence and TNM stage in predicting overall survival. Of note, the combination of this feature score and TNM stage provided a better overall survival prediction than either of them individually. The transcription levels of all the hypermethylated genes were significantly increased after demethylation, and the expression levels of 3 hypomethylated proteins were significantly higher in tumor tissues than in normal tissues, as indicated by immunohistochemistry data from the Human Protein Atlas. Our results suggested that these identified genes with prognostic features were regulated by DNA methylation of their promoters. Conclusion: Our studies demonstrated the potential application of DNA methylation markers in the prognosis of LUAD.
Collapse
Affiliation(s)
- Liexi Xu
- Department of Radiation and Medical Oncology, Wuhan University of Zhongnan Hospital, Wuhan, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Wuhan University of Zhongnan Hospital, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Wuhan University of Zhongnan Hospital, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Wuhan University of Zhongnan Hospital, Wuhan, China
| | - Hongxin Xie
- Department of Radiation and Medical Oncology, Wuhan University of Zhongnan Hospital, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Wuhan University of Zhongnan Hospital, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Conghua Xie,
| |
Collapse
|