1
|
Zhou S, Lin N, Yu L, Su X, Liu Z, Yu X, Gao H, Lin S, Zeng Y. Single-cell multi-omics in the study of digestive system cancers. Comput Struct Biotechnol J 2024; 23:431-445. [PMID: 38223343 PMCID: PMC10787224 DOI: 10.1016/j.csbj.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024] Open
Abstract
Digestive system cancers are prevalent diseases with a high mortality rate, posing a significant threat to public health and economic burden. The diagnosis and treatment of digestive system cancer confront conventional cancer problems, such as tumor heterogeneity and drug resistance. Single-cell sequencing (SCS) emerged at times required and has developed from single-cell RNA-seq (scRNA-seq) to the single-cell multi-omics era represented by single-cell spatial transcriptomics (ST). This article comprehensively reviews the advances of single-cell omics technology in the study of digestive system tumors. While analyzing and summarizing the research cases, vital details on the sequencing platform, sample information, sampling method, and key findings are provided. Meanwhile, we summarize the commonly used SCS platforms and their features, as well as the advantages of multi-omics technologies in combination. Finally, the development trends and prospects of the application of single-cell multi-omics technology in digestive system cancer research are prospected.
Collapse
Affiliation(s)
- Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, China
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Nanfei Lin
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research, Jewish General Hospital, & Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xiaowan Yu
- Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Su Z, He Y, You L, Chen J, Zhang G, Liu Z. SPP1+ macrophages and FAP+ fibroblasts promote the progression of pMMR gastric cancer. Sci Rep 2024; 14:26221. [PMID: 39482333 PMCID: PMC11528032 DOI: 10.1038/s41598-024-76298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
Immunotherapy has become a primary and secondary treatment for gastric cancer (GC) patients with mismatch repair deficiency (dMMR), and is used in both perioperative and advanced stages. The tumor immune microenvironment (TiME) is crucial for immunotherapy efficacy, yet the impact of MMR status on TiME remains understudied. We employed single-cell RNA sequencing (scRNA-seq) to analyze 33 fresh tissue samples from 25 patients, which included 10 normal tissues, 6 dMMR tumor tissues, and 17 pMMR tumor tissues, aiming to characterize the cellular and molecular components of the TiME. The proficient mismatch repair (pMMR) group displayed a significantly higher prevalence of a specific GC cell type, termed GC2, characterized by increased hypoxia, epithelial-mesenchymal transition (EMT), and angiogenic activities compared to the dMMR group. GC2 cells overexpressed BEX3 and GPC3, and they significantly correlated with poorer survival. The pMMR group also showed increased infiltration of SPP1 + macrophages and FAP + fibroblasts, exhibiting strong hypoxic and pro-angiogenic features. Furthermore, a higher proportion of E2 endothelial cells, involved in extracellular matrix (ECM) remodeling and showing heightened VEGF pathway, HIF pathway, and angiogenesis activity, were identified in pMMR patients. Intercellular communication analyses revealed that GC2 cells, SPP1 + macrophages, FAP + fibroblasts, and E2 endothelial cells interact through VEGF, SPP1, and MIF signals, forming a TiME characterized by hypoxia, pro-angiogenesis, and ECM remodeling. This study uncovered TiME heterogeneity among GC patients with different MMR states, highlighting that the pMMR TiME is distinguished by hypoxia, pro-angiogenesis, and ECM remodeling, driven by the presence of GC2 cells, SPP1 + macrophages, FAP + fibroblasts, and E2 endothelial cells. These findings are pivotal for developing targeted immunotherapies for GC patients with pMMR.
Collapse
Affiliation(s)
- Zhixiong Su
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Yufang He
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Lijie You
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Jingbo Chen
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Guifeng Zhang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Zhenhua Liu
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
3
|
Zhang Z, Chen Y, Pan X, Li P, Ren Z, Wang X, Chen Y, Shen S, Wang T, Lin A. IL-1β mediates Candida tropicalis-induced immunosuppressive function of MDSCs to foster colorectal cancer. Cell Commun Signal 2024; 22:408. [PMID: 39164774 PMCID: PMC11337875 DOI: 10.1186/s12964-024-01771-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND There is increasing evidence that gut fungi dysbiosis plays a crucial role in the development and progression of colorectal cancer (CRC). It has been reported that gut fungi exacerbate the severity of CRC by regulating tumor immunity. Our previous studies have shown that the opportunistic pathogenic fungal pathogen, Candida tropicalis (C. tropicalis) promotes CRC progression by enhancing the immunosuppressive function of MDSCs and activating the NLRP3 inflammasome of MDSCs. However, the relationship between IL-1β produced by NLRP3 inflammasome activation and the immunosuppressive function of MDSCs enhanced by C. tropicalis in CRC remains unclear. METHODS The TCGA database was used to analyze the relationship between IL-1β and genes related to immunosuppressive function of MDSCs in human CRC. The expression of IL-1β in human CRC tissues was detected by immunofluorescence staining. The proteomic analysis was performed on the culture supernatant of C. tropicalis-stimulated MDSCs. The experiments of supplementing and blocking IL-1β as well as inhibiting the NLRP3 inflammasome activation were conducted. A mouse colon cancer xenograft model was established by using MC38 colon cancer cell line. RESULTS Analysis of CRC clinical samples showed that the high expression of IL-1β was closely related to the immunosuppressive function of tumor-infiltrated MDSCs. The results of in vitro experiments revealed that IL-1β was the most secreted cytokine of MDSCs stimulated by C. tropicalis. In vitro supplementation of IL-1β further enhanced the immunosuppressive function of C. tropicalis-stimulated MDSCs and NLRP3-IL-1β axis mediated the immunosuppressive function of MDSCs enhanced by C. tropicalis. Finally, blockade of IL-1β secreted by MDSCs augmented antitumor immunity and mitigated C. tropicalis-associated colon cancer. CONCLUSIONS C. tropicalis promotes excessive secretion of IL-1β from MDSCs via the NLRP3 inflammasome. IL-1β further enhances the immunosuppressive function of MDSCs to inhibit antitumor immunity, thus promoting the progression of CRC. Therefore, targeting IL-1β secreted by MDSCs may be a potential immunotherapeutic strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Zhiyong Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Ying Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xinyi Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Pengfei Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Zhengqian Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiuzhu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxi Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Aihua Lin
- Department of Critical Care Medicine, Sucheng District, Suqian Hospital of Nanjing Drum Tower Hospital Group, 138 Huanghe South Road, Suqian City, China.
| |
Collapse
|
4
|
Zhang JP, Yan BZ, Liu J, Wang W. Action of circulating and infiltrating B cells in the immune microenvironment of colorectal cancer by single-cell sequencing analysis. World J Gastrointest Oncol 2024; 16:2671-2684. [DOI: 10.4251/wjgo.v16.i6.2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer (CRC), one of the most prevalent malignancies worldwide. In this study, multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC. By revealing the heterogeneity and functional differences of B cells in cancer immunity, we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.
AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC, explore the potential driving mechanism of B cell development, analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules, and search for possible regulatory pathways to promote the anti-tumor effects of B cells.
METHODS A total of 69 paracancer (normal), tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database (https://portal.gdc.cancer.gov/). After the immune cells were sorted by multicolor flow cytometry, the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform, and the data were analyzed using bioinformatics tools such as Seurat. The differences in the number and function of B cell infiltration between tumor and normal tissue, the interaction between B cell subsets and T cells and myeloid cell subsets, and the transcription factor regulatory network of B cell subsets were explored and analyzed.
RESULTS Compared with normal tissue, the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly. Among them, germinal center B cells (GCB) played the most prominent role, with positive clone expansion and heavy chain mutation level increasing, and the trend of differentiation into memory B cells increased. However, the number of plasma cells in the tumor microenvironment decreased significantly, and the plasma cells secreting IgA antibodies decreased most obviously. In addition, compared with the immune microenvironment of normal tissues, GCB cells in tumor tissues became more closely connected with other immune cells such as T cells, and communication molecules that positively regulate immune function were significantly enriched.
CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced, and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level. Meanwhile, GCB has enhanced its association with immune cells in the microenvironment, which plays a positive anti-tumor effect.
Collapse
Affiliation(s)
- Jing-Po Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Hebei Medical University, Shijiazhuang 050032, Hebei Province, China
| | - Bing-Zheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Hebei Medical University, Shijiazhuang 050032, Hebei Province, China
| | - Jie Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, Changsha 410002, Hunan Province, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Hebei Medical University, Shijiazhuang 050032, Hebei Province, China
| |
Collapse
|
5
|
Zhang JP, Yan BZ, Liu J, Wang W. Action of circulating and infiltrating B cells in the immune microenvironment of colorectal cancer by single-cell sequencing analysis. World J Gastrointest Oncol 2024; 16:2683-2696. [PMID: 38994150 PMCID: PMC11236258 DOI: 10.4251/wjgo.v16.i6.2683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer (CRC), one of the most prevalent malignancies worldwide. In this study, multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC. By revealing the heterogeneity and functional differences of B cells in cancer immunity, we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies. AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC, explore the potential driving mechanism of B cell development, analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules, and search for possible regulatory pathways to promote the anti-tumor effects of B cells. METHODS A total of 69 paracancer (normal), tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database (https://portal.gdc.cancer.gov/). After the immune cells were sorted by multicolor flow cytometry, the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform, and the data were analyzed using bioinformatics tools such as Seurat. The differences in the number and function of B cell infiltration between tumor and normal tissue, the interaction between B cell subsets and T cells and myeloid cell subsets, and the transcription factor regulatory network of B cell subsets were explored and analyzed. RESULTS Compared with normal tissue, the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly. Among them, germinal center B cells (GCB) played the most prominent role, with positive clone expansion and heavy chain mutation level increasing, and the trend of differentiation into memory B cells increased. However, the number of plasma cells in the tumor microenvironment decreased significantly, and the plasma cells secreting IgA antibodies decreased most obviously. In addition, compared with the immune microenvironment of normal tissues, GCB cells in tumor tissues became more closely connected with other immune cells such as T cells, and communication molecules that positively regulate immune function were significantly enriched. CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced, and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level. Meanwhile, GCB has enhanced its association with immune cells in the microenvironment, which plays a positive anti-tumor effect.
Collapse
Affiliation(s)
- Jing-Po Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Hebei Medical University, Shijiazhuang 050032, Hebei Province, China
| | - Bing-Zheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Hebei Medical University, Shijiazhuang 050032, Hebei Province, China
| | - Jie Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, Changsha 410002, Hunan Province, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Hebei Medical University, Shijiazhuang 050032, Hebei Province, China
| |
Collapse
|
6
|
Normanno N, Caridi V, Fassan M, Avallone A, Ciardiello F, Pinto C. Resistance to immune checkpoint inhibitors in colorectal cancer with deficient mismatch repair/microsatellite instability: misdiagnosis, pseudoprogression and/or tumor heterogeneity? EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:495-507. [PMID: 38966168 PMCID: PMC11220308 DOI: 10.37349/etat.2024.00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 07/06/2024] Open
Abstract
Colorectal carcinoma (CRC) with deficiency of the deficient mismatch repair (dMMR) pathway/microsatellite instability (MSI) is characterized by a high mutation load and infiltration of immune cells in the tumor microenvironment. In agreement with these findings, clinical trials have demonstrated a significant activity of immune checkpoint inhibitors (ICIs) in dMMR/MSI metastatic CRC (mCRC) patients and, more recently, in CRC patients with early disease undergoing neoadjuvant therapy. However, despite high response rates and durable clinical benefits, a fraction of mCRC patients, up to 30%, showed progressive disease when treated with single agent anti-programmed cell death 1 (PD-1) antibody. This article discusses the three main causes that have been associated with early progression of dMMR/MSI mCRC patients while on treatment with ICIs, i.e., misdiagnosis, pseudoprogression and tumor heterogeneity. While pseudoprogression probably does not play a relevant role, data from clinical studies demonstrate that some dMMR/MSI CRC cases with rapid progression on ICIs may be misdiagnosed, underlining the importance of correct diagnostics. More importantly, evidence suggests that dMMR/MSI mCRC is a heterogeneous group of tumors with different sensitivity to ICIs. Therefore, we propose novel diagnostic and therapeutic strategies to improve the outcome of dMMR/MSI CRC patients.
Collapse
Affiliation(s)
- Nicola Normanno
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Vincenza Caridi
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, 35100 Padua, Italy
- Veneto Institute of Oncology, IOV-IRCCS, 35100 Padua, Italy
| | - Antonio Avallone
- Medical Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, The University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Carmine Pinto
- Medical Oncology, Comprehensive Cancer Centre IRCCS-AUSL Reggio Emilia, 42121 Reggio Emilia, Italy
| |
Collapse
|
7
|
Shen H, Chen Y, Xu M, Zhou J, Huang C, Wang Z, Shao Y, Zhang H, Lu Y, Li S, Fu Z. Cellular senescence gene TACC3 associated with colorectal cancer risk via genetic and DNA methylated alteration. Arch Toxicol 2024; 98:1499-1513. [PMID: 38480537 DOI: 10.1007/s00204-024-03702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
Cell senescence genes play a vital role in the pathogenesis of colorectal cancer, a process that may involve the triggering of genetic variations and reversible phenotypes caused by epigenetic modifications. However, the specific regulatory mechanisms remain unclear. Using CellAge and The Cancer Genome Atlas databases and in-house RNA-seq data, DNA methylation-modified cellular senescence genes (DMCSGs) were validated by Support Vector Machine and correlation analyses. In 1150 cases and 1342 controls, we identified colorectal cancer risk variants in DMCSGs. The regulatory effects of gene, variant, and DNA methylation were explored through dual-luciferase and 5-azacytidine treatment experiments, complemented by multiple database analyses. Biological functions of key gene were evaluated via cell proliferation assays, SA-β-gal staining, senescence marker detection, and immune infiltration analyses. The genetic variant rs4558926 in the downstream of TACC3 was significantly associated with colorectal cancer risk (OR = 1.35, P = 3.22 × 10-4). TACC3 mRNA expression increased due to rs4558926 C > G and decreased DNA methylation levels. The CpG sites in the TACC3 promoter region were regulated by rs4558926. TACC3 knockdown decreased proliferation and senescence in colorectal cancer cells. In addition, subjects with high-TACC3 expression presented an immunosuppressive microenvironment. These findings provide insights into the involvement of genetic variants of cellular senescence genes in the development and progression of colorectal cancer.
Collapse
Affiliation(s)
- Hengyang Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Menghuan Xu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jieyu Zhou
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Arshad J, Rao A, Repp ML, Rao R, Wu C, Merchant JL. Myeloid-Derived Suppressor Cells: Therapeutic Target for Gastrointestinal Cancers. Int J Mol Sci 2024; 25:2985. [PMID: 38474232 PMCID: PMC10931832 DOI: 10.3390/ijms25052985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Gastrointestinal cancers represent one of the more challenging cancers to treat. Current strategies to cure and control gastrointestinal (GI) cancers like surgery, radiation, chemotherapy, and immunotherapy have met with limited success, and research has turned towards further characterizing the tumor microenvironment to develop novel therapeutics. Myeloid-derived suppressor cells (MDSCs) have emerged as crucial drivers of pathogenesis and progression within the tumor microenvironment in GI malignancies. Many MDSCs clinical targets have been defined in preclinical models, that potentially play an integral role in blocking recruitment and expansion, promoting MDSC differentiation into mature myeloid cells, depleting existing MDSCs, altering MDSC metabolic pathways, and directly inhibiting MDSC function. This review article analyzes the role of MDSCs in GI cancers as viable therapeutic targets for gastrointestinal malignancies and reviews the existing clinical trial landscape of recently completed and ongoing clinical studies testing novel therapeutics in GI cancers.
Collapse
Affiliation(s)
- Junaid Arshad
- University of Arizona Cancer Center, GI Medical Oncology, Tucson, AZ 85724, USA;
| | - Amith Rao
- Banner University Medical Center—University of Arizona, Tucson, AZ 85719, USA; (A.R.)
| | - Matthew L. Repp
- College of Medicine, University of Arizona, Tucson, AZ 85719, USA;
| | - Rohit Rao
- University Hospitals Cleveland Medical Center, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA;
| | - Clinton Wu
- Banner University Medical Center—University of Arizona, Tucson, AZ 85719, USA; (A.R.)
| | - Juanita L. Merchant
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
9
|
Li W, Dong X, Wan Z, Wang W, Zhang J, Mi Y, Li R, Xu Z, Wang B, Li N, He G. PXMP4 promotes gastric cancer cell epithelial-mesenchymal transition via the PI3K/AKT signaling pathway. Mol Biol Rep 2024; 51:350. [PMID: 38401002 DOI: 10.1007/s11033-024-09312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Peroxisomal membrane protein 4 (PXMP4), a member of the peroxisome membrane protein PXMP2/4 family, participates in the progression of several malignant cancers. Nevertheless, the effect of PXMP4 in the development of gastric cancer (GC) is still unknown. As a result, the focus of this investigation was to elucidate the potential mechanisms of PXMP4 in GC. METHODS AND RESULTS Firstly, bioinformatics analysis results showed higher expression of PXMP4 in GC tissues. Secondly, clinical analysis of 57 patients with GC revealed correlations between PXMP4 expression and differentiation, depth of invasion, as well as TNM stage. Furthermore, individuals with elevated PXMP4 expression in GC exhibited an unfavorable prognosis. In vitro data showed the involvement of knockdown/overexpression of PXMP4 in the proliferation, invasion, and migration of GC cells, and triggering the epithelial-mesenchymal transition (EMT) of GC cells through the activation of the PI3K/AKT signaling pathway. LY294002, a PI3K/AKT inhibitor, inhibited the expression of PI3K/AKT-related proteins but did not affect the expression of PXMP4. CONCLUSIONS These findings indicate that PXMP4 potentially functions as an upstream molecule in the PI3K/AKT pathway, governing the EMT process in GC.
Collapse
Affiliation(s)
- Wei Li
- School of forensic Medicine, Xinxiang Medical University, Xinxiang, 453000, China
| | - Xiangyang Dong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Zhidan Wan
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wenxin Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Jingyu Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Yongrun Mi
- School of forensic Medicine, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ruiyuan Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
- Sanquan College, Xinxiang Medical University, Xinxiang, 453000, China
| | - Zishan Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Beixi Wang
- The Fourth Clinical College, Xinxiang Medical University, Xinxiang, 453000, China
| | - Na Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China.
| | - Guoyang He
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
10
|
Yang X, Lian B, Zhang N, Long J, Li Y, Xue J, Chen X, Wang Y, Wang Y, Xun Z, Piao M, Zhu C, Wang S, Sun H, Song Z, Lu L, Dong X, Wang A, Liu W, Pan J, Hou X, Guan M, Huo L, Shi J, Zhang H, Zhou J, Lu Z, Mao Y, Sang X, Wu L, Yang X, Wang K, Zhao H. Genomic characterization and immunotherapy for microsatellite instability-high in cholangiocarcinoma. BMC Med 2024; 22:42. [PMID: 38281914 PMCID: PMC10823746 DOI: 10.1186/s12916-024-03257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) is a unique genomic status in many cancers. However, its role in the genomic features and immunotherapy in cholangiocarcinoma (CCA) is unclear. This study aimed to systematically investigate the genomic characterization and immunotherapy efficacy of MSI-H patients with CCA. METHODS We enrolled 887 patients with CCA in this study. Tumor samples were collected for next-generation sequencing. Differences in genomic alterations between the MSI-H and microsatellite stability (MSS) groups were analyzed. We also investigated the survival of PD-1 inhibitor-based immunotherapy between two groups of 139 patients with advanced CCA. RESULTS Differential genetic alterations between the MSI-H and MSS groups included mutations in ARID1A, ACVR2A, TGFBR2, KMT2D, RNF43, and PBRM1 which were enriched in MSI-H groups. Patients with an MSI-H status have a significantly higher tumor mutation burden (TMB) (median 41.7 vs. 3.1 muts/Mb, P < 0.001) and more positive programmed death ligand 1 (PD-L1) expression (37.5% vs. 11.9%, P < 0.001) than those with an MSS status. Among patients receiving PD-1 inhibitor-based therapy, those with MSI-H had a longer median overall survival (OS, hazard ratio (HR) = 0.17, P = 0.001) and progression-free survival (PFS, HR = 0.14, P < 0.001) than patients with MSS. Integrating MSI-H and PD-L1 expression status (combined positive score ≥ 5) could distinguish the efficacy of immunotherapy. CONCLUSIONS MSI-H status was associated with a higher TMB value and more positive PD-L1 expression in CCA tumors. Moreover, in patients with advanced CCA who received PD-1 inhibitor-based immunotherapy, MSI-H and positive PD-L1 expression were associated with improved both OS and PFS. TRIAL REGISTRATION This study was registered on ClinicalTrials.gov on 07/01/2017 (NCT03892577).
Collapse
Affiliation(s)
- Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgery, Peking, Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyu Long
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiran Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Xue
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangqi Chen
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunchao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanyu Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenpei Zhu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huishan Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | - Jie Pan
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaorong Hou
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Guan
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haohai Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhenhui Lu
- Hepatobiliary and Pancreatic Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Yilei Mao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liqun Wu
- Liver Disease Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kai Wang
- OrigiMed Co., Ltd, Shanghai, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|