1
|
Wang J, Hu J, Qin D, Han D, Hu J. A multi-omics Mendelian randomization identifies putatively causal genes and DNA methylation sites for asthma. World Allergy Organ J 2024; 17:101008. [PMID: 39720783 PMCID: PMC11667005 DOI: 10.1016/j.waojou.2024.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/02/2024] [Accepted: 11/12/2024] [Indexed: 12/26/2024] Open
Abstract
Background Asthma is a global chronic respiratory disease with complex pathogenesis. While current therapies offer some relief, they often fall short in effectively managing symptoms and preventing exacerbations for numerous patients. Thus, understanding its mechanisms and discovering new drug targets remains a pressing need for better treatment. Methods Using the GEO dataset, we screened differentially expressed genes (DEGs) in asthma patients' blood. Employing Summary Data-based Mendelian Randomization (SMR) and Two-Sample Mendelian Randomization (TSMR), we pinpointed asthma causal genes, causal DNA methylation sites, and methylation sites affecting gene expression, cross validated with at least 2 large-scale GWAS from each source. We utilized colocalization for genetic associations, meta-analysis for data integration, two-step MR for methylation-gene-asthma mediation mechanism. Druggability was evaluated using Open Target, virtual screening, and docking. Results Among the 954 DEGs found in asthma patients' blood, increased expression of CEP95 (discovery, OR_SMR = 0.94, 95% CI: 0.91-0.97), RBM6 (discovery, OR_SMR = 0.97, 95% CI: 0.95-0.99), and ITPKB (discovery, OR_SMR = 0.82, 95% CI: 0.74-0.92) in the blood decreased the risk of asthma, higher levels of HOXB-AS1 (discovery, OR_SMR = 1.05, 95% CI: 1.03-1.07), ETS1 (discovery, OR_SMR = 1.62, 95% CI: 1.29-2.04), and JAK2 (discovery, OR_SMR = 1.13, 95% CI: 1.06-1.21) in the blood increased the risk of asthma. Additionally, a total of 8 methylation sites on ITPKB, ETS1, and JAK2 were identified to influence asthma. An increase in methylation at site cg16265553 raised the risk of asthma partially by suppressing ITPKB expression. Similarly, increased methylation at cg13661497 reduced the asthma risk totally by suppressing JAK2 expression. The impact of CEP95, HOXB-AS1, and RBM6 expressions on asthma was further confirmed in lung tissues. Except for HOXB-AS1, all the other genes were potential druggable targets. Conclusion Our study highlighted that specific gene expressions and methylation sites significantly influence asthma risk and revealed a potential methylation-to-gene-to-asthma mechanism. This provided pivotal evidence for future targeted functional studies and the development of preventive and treatment strategies.
Collapse
Affiliation(s)
- Jia Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinxin Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Qin
- Research Center of Traditional Chinese Medicine Information Engineering, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Han
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, China
| | - Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Gill D, Dib MJ, Cronjé HT, Karhunen V, Woolf B, Gagnon E, Daghlas I, Nyberg M, Drakeman D, Burgess S. Common pitfalls in drug target Mendelian randomization and how to avoid them. BMC Med 2024; 22:473. [PMID: 39407214 PMCID: PMC11481744 DOI: 10.1186/s12916-024-03700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Drug target Mendelian randomization describes the use of genetic variants as instrumental variables for studying the effects of pharmacological agents. The paradigm can be used to inform on all aspects of drug development and has become increasingly popular over the last decade, particularly given the time- and cost-efficiency with which it can be performed even before commencing clinical studies. MAIN BODY In this review, we describe the recent emergence of drug target Mendelian randomization, its common pitfalls, how best to address them, as well as potential future directions. Throughout, we offer advice based on our experiences on how to approach these types of studies, which we hope will be useful for both practitioners and those translating the findings from such work. CONCLUSIONS Drug target Mendelian randomization is nuanced and requires a combination of biological, statistical, genetic, epidemiological, clinical, and pharmaceutical expertise to be utilized to its full potential. Unfortunately, these skillsets are relatively infrequently combined in any given study.
Collapse
Affiliation(s)
- Dipender Gill
- Sequoia Genetics, London, UK.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, 90 Wood Lane, London, W12 0BZ, UK.
| | - Marie-Joe Dib
- Cardiovascular Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Héléne T Cronjé
- Sequoia Genetics, London, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Ville Karhunen
- Sequoia Genetics, London, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Benjamin Woolf
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- School of Psychological Science, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Eloi Gagnon
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, Canada
| | - Iyas Daghlas
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael Nyberg
- Cardiovascular Biology, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Donald Drakeman
- University of Cambridge Centre for Health Leadership & Enterprise, Judge Business School, Trumpington Street, Cambridge, UK
- Advent Venture Partners, London, UK
| | - Stephen Burgess
- Sequoia Genetics, London, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Manoharan A, Ballambattu VB, Palani R. Genetic architecture of preeclampsia. Clin Chim Acta 2024; 558:119656. [PMID: 38583550 DOI: 10.1016/j.cca.2024.119656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Aarthi Manoharan
- Department of Medical Biotechnology, Kirumampakkam, Puducherry 607403, India.
| | | | - Ramya Palani
- Department of Obstetrics and Gynecology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607403, India
| |
Collapse
|
4
|
Gagnon E, Girard A, Bourgault J, Abner E, Gill D, Thériault S, Vohl MC, Tchernof A, Esko T, Mathieu P, Arsenault BJ. Genetic assessment of efficacy and safety profiles of coagulation cascade proteins identifies Factors II and XI as actionable anticoagulant targets. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae043. [PMID: 38933427 PMCID: PMC11200102 DOI: 10.1093/ehjopen/oeae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 06/28/2024]
Abstract
Aims Anticoagulants are routinely used by millions of patients worldwide to prevent blood clots. Yet, problems with anticoagulant therapy remain, including a persistent and cumulative bleeding risk in patients undergoing prolonged anticoagulation. New safer anticoagulant targets are needed. Methods and results To prioritize anticoagulant targets with the strongest efficacy [venous thromboembolism (VTE) prevention] and safety (low bleeding risk) profiles, we performed two-sample Mendelian randomization and genetic colocalization. We leveraged three large-scale plasma protein data sets (deCODE as discovery data set and Fenland and Atherosclerosis Risk in Communities as replication data sets] and one liver gene expression data set (Institut Universitaire de Cardiologie et de Pneumologie de Québec bariatric biobank) to evaluate evidence for a causal effect of 26 coagulation cascade proteins on VTE from a new genome-wide association meta-analysis of 44 232 VTE cases and 847 152 controls, stroke subtypes, bleeding outcomes, and parental lifespan as an overall measure of efficacy/safety ratio. A 1 SD genetically predicted reduction in F2 blood levels was associated with lower risk of VTE [odds ratio (OR) = 0.44, 95% confidence interval (CI) = 0.38-0.51, P = 2.6e-28] and cardioembolic stroke risk (OR = 0.55, 95% CI = 0.39-0.76, P = 4.2e-04) but not with bleeding (OR = 1.13, 95% CI = 0.93-1.36, P = 2.2e-01). Genetically predicted F11 reduction was associated with lower risk of VTE (OR = 0.61, 95% CI = 0.58-0.64, P = 4.1e-85) and cardioembolic stroke (OR = 0.77, 95% CI = 0.69-0.86, P = 4.1e-06) but not with bleeding (OR = 1.01, 95% CI = 0.95-1.08, P = 7.5e-01). These Mendelian randomization associations were concordant across the three blood protein data sets and the hepatic gene expression data set as well as colocalization analyses. Conclusion These results provide strong genetic evidence that F2 and F11 may represent safe and efficacious therapeutic targets to prevent VTE and cardioembolic strokes without substantially increasing bleeding risk.
Collapse
Affiliation(s)
- Eloi Gagnon
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Y-3106, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Quebec, QC, Canada, G1V 4G5
| | - Arnaud Girard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Y-3106, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Quebec, QC, Canada, G1V 4G5
| | - Jérôme Bourgault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Y-3106, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Quebec, QC, Canada, G1V 4G5
| | - Erik Abner
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Y-3106, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Quebec, QC, Canada, G1V 4G5
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Sébastien Thériault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Y-3106, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Quebec, QC, Canada, G1V 4G5
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Marie-Claude Vohl
- School of Nutrition, Université Laval, Quebec, QC, Canada
- Centre Nutrition, Santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Quebec, QC, Canada
| | - André Tchernof
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Y-3106, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Quebec, QC, Canada, G1V 4G5
- School of Nutrition, Université Laval, Quebec, QC, Canada
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrick Mathieu
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Y-3106, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Quebec, QC, Canada, G1V 4G5
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Benoit J Arsenault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Y-3106, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Quebec, QC, Canada, G1V 4G5
- Department of Medicine, Faculty of Medicine, 1050 Av. de la Médecine, Québec City, Quebec G1V 0A6, Canada
| |
Collapse
|
5
|
Cai Y, Li Y, Wang L, Mo L, Li Y, Zhang S. The non-causative role of abnormal serum uric acid in intervertebral disc degeneration: A Mendelian randomization study. JOR Spine 2024; 7:e1283. [PMID: 38222817 PMCID: PMC10782049 DOI: 10.1002/jsp2.1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a common musculoskeletal disorder that contributes significantly to disability and healthcare costs. Serum urate concentration has been implicated in the development of various musculoskeletal conditions. While previous observational studies have suggested an association between the two conditions, it might confound the effect of serum urate concentrations on IDD. This Mendelian randomization (MR) study aimed to investigate the causal relationship between serum urate concentration and IDD. Methods We performed a two-sample MR analysis using summary-level data from genome-wide association studies (GWAS) of serum urate concentration (n = 13 585 994 European ancestry) and IDD (n = 16 380 337 European ancestry). Single nucleotide polymorphisms (SNPs) significantly associated with serum urate concentration (p < 5 × 10-8) were selected as instrumental variables. The associations between genetically predicted serum urate concentration and IDD were estimated using the inverse-variance weighted (IVW) method, with sensitivity analyses employing the weighted median, MR-Egger, and MR-PRESSO approaches to assess the robustness of the findings. Results In the primary IVW analysis, genetically predicted serum urate concentration was unrelated associated with IDD (odds ratio [OR] = 1.00, 95% confidence interval (CI): 1.00-1.00, p = 0.17)). The results remained consistent across the sensitivity analyses, and no significant directional pleiotropy was detected (MR-Egger intercept: p = 0.15). Conclusions This MR study provides evidence that there is no causal relationship between serum urate concentration and IDD. It suggests previous observational associations may be confounded. Serum urate levels are unlikely to be an important contributor to IDD.
Collapse
Affiliation(s)
- Yang‐Ting Cai
- Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- Department of Spinal Surgerythe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouPeople's Republic of China
| | - Yong‐Xian Li
- Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
| | - Li‐Ren Wang
- Department of Spinal Surgerythe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouPeople's Republic of China
| | - Ling Mo
- Department of Spinal Surgerythe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouPeople's Republic of China
| | - Ying Li
- Department of Spinal Surgerythe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouPeople's Republic of China
| | - Shun‐Cong Zhang
- Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
| |
Collapse
|
6
|
Chen L, Qiu W, Sun X, Gao M, Zhao Y, Li M, Fan Z, Lv G. Novel insights into causal effects of serum lipids and lipid-modifying targets on cholelithiasis. Gut 2024; 73:521-532. [PMID: 37945330 DOI: 10.1136/gutjnl-2023-330784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Different serum lipids and lipid-modifying targets should affect the risk of cholelithiasis differently, however, whether such effects are causal is still controversial and we aimed to answer this question. DESIGN We prospectively estimated the associations of four serum lipids with cholelithiasis in UK Biobank using the Cox proportional hazard model, including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG). Furthermore, we estimated the causal associations of the genetically predicted serum lipids with cholelithiasis in Europeans using the Mendelian randomisation (MR) design. Finally, both drug-target MR and colocalisation analyses were performed to estimate the lipid-modifying targets' effects on cholelithiasis, including HMGCR, NPC1L1, PCSK9, APOB, LDLR, ACLY, ANGPTL3, MTTP, PPARA, PPARD and PPARG. RESULTS We found that serum levels of LDL-C and HDL-C were inversely associated with cholelithiasis risk and such associations were linear. However, the serum level of TC was non-linearly associated with cholelithiasis risk where lower TC was associated with higher risk of cholelithiasis, and the serum TG should be in an inverted 'U-shaped' relationship with it. The MR analyses supported that lower TC and higher TG levels were two independent causal risk factors. The drug-target MR analysis suggested that HMGCR inhibition should reduce the risk of cholelithiasis, which was corroborated by colocalisation analysis. CONCLUSION Lower serum TC can causally increase the risk of cholelithiasis. The cholelithiasis risk would increase with the elevation of serum TG but would decrease when exceeding 2.57 mmol/L. The use of HMGCR inhibitors should prevent its risk.
Collapse
Affiliation(s)
- Lanlan Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Menghan Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuexuan Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingyue Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
de La Harpe R, Zagkos L, Gill D, Cronjé HT, Karhunen V. Cerebrospinal and Brain Proteins Implicated in Neuropsychiatric and Risk Factor Traits: Evidence from Mendelian Randomization. Biomedicines 2024; 12:327. [PMID: 38397929 PMCID: PMC10886978 DOI: 10.3390/biomedicines12020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Neuropsychiatric disorders present a global health challenge, necessitating an understanding of their molecular mechanisms for therapeutic development. Using Mendelian randomization (MR) analysis, this study explored associations between genetically predicted levels of 173 proteins in cerebrospinal fluid (CSF) and 25 in the brain with 14 neuropsychiatric disorders and risk factors. Follow-up analyses assessed consistency across plasma protein levels and gene expression in various brain regions. Proteins were instrumented using tissue-specific genetic variants, and colocalization analysis confirmed unbiased gene variants. Consistent MR and colocalization evidence revealed that lower cortical expression of low-density lipoprotein receptor-related protein 8, coupled higher abundance in the CSF and plasma, associated with lower fluid intelligence scores and decreased bipolar disorder risk. Additionally, elevated apolipoprotein-E2 and hepatocyte growth factor-like protein in the CSF and brain were related to reduced leisure screen time and lower odds of physical activity, respectively. Furthermore, elevated CSF soluble tyrosine-protein kinase receptor 1 level increased liability to attention deficit hyperactivity disorder and schizophrenia alongside lower fluid intelligence scores. This research provides genetic evidence supporting novel tissue-specific proteomic targets for neuropsychiatric disorders and their risk factors. Further exploration is necessary to understand the underlying biological mechanisms and assess their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Roxane de La Harpe
- Unit of Internal Medicine, Department of Medicine, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Loukas Zagkos
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (L.Z.); (D.G.)
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (L.Z.); (D.G.)
| | - Héléne T. Cronjé
- Department of Public Health, Section of Epidemiology, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Ville Karhunen
- Research Unit of Mathematical Sciences, Faculty of Science, University of Oulu, Fi-900014 Oulu, Finland;
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Fi-900014 Oulu, Finland
| |
Collapse
|