1
|
Ding H, Li Y, Liu L, Hao N, Zou S, Jiang Q, Liang Y, Ma N, Feng S, Wang X, Wu J, Loor JJ. Sirtuin 1 is involved in oleic acid-induced calf hepatocyte steatosis via alterations in lipid metabolism-related proteins. J Anim Sci 2021; 99:6358199. [PMID: 34436591 DOI: 10.1093/jas/skab250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 11/14/2022] Open
Abstract
Sirtuin 1 (SIRT1), an NAD-dependent protein deacetylase, plays a central role in the control of lipid metabolism in nonruminants. However, the role of SIRT1 in hepatic lipid metabolism in dairy cows with fatty liver is not well known. Thus, we used isolated primary bovine hepatocytes to determine the role of SIRT1 in protecting cells against oleic acid (OA)-induced steatosis. Recombinant adenoviruses to overexpress (AD-GFP-SIRT1-E) or knockdown (AD-GFP-SIRT1-N) SIRT1 were used for transduction of hepatocytes. Calf hepatocytes isolated from five female calves (1 d old, 30 to 40 kg) were used to determine both time required and the lowest dose of OA that could induce triacylglycerol (TAG) accumulation. Analyses indicated that 0.25 mM OA for 24 h was suitable to induce TAG accumulation. In addition, OA not only led to an increase in TAG, but also upregulated mRNA and protein abundance of sterol regulatory element-binding transcription factor 1 (SREBF1) and downregulated SIRT1 and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PPARGC1A). Thus, these in vitro conditions were deemed optimal for subsequent experiments. Calf hepatocytes were cultured and incubated with OA (0.25 mM) for 24 h, followed by adenoviral AD-GFP-SIRT1-E or AD-GFP-SIRT1-N transduction for 48 h. Overexpression of SIRT1 led to greater protein and mRNA abundance of SIRT1 along with fatty acid oxidation-related genes including PPARGC1A, peroxisome proliferator-activated receptor alpha (PPARA), retinoid X receptor α (RXRA), and ratio of phospho-acetyl-CoA carboxylase alpha (p-ACACA)/total acetyl-CoA carboxylase alpha (ACACA). In contrast, it resulted in lower protein and mRNA abundance of genes related to lipid synthesis including SREBF1, fatty acid synthase (FASN), apolipoprotein E (APOE), and low-density lipoprotein receptor (LDLR). The concentration of TAG decreased due to SIRT1 overexpression. In contrast, silencing SIRT1 led to lower protein and mRNA abundance of SIRT1, PPARGC1A, PPARA, RXRA, and greater protein and mRNA abundance of SREBF1, FASN, APOE, and LDLR. Further, those responses were accompanied by greater content of cellular TAG and total cholesterol (TC). Overall, data from these in vitro studies indicated that SIRT1 is involved in the regulation of lipid metabolism in calf hepatocytes subjected to an increase in the supply of OA. Thus, it is possible that alterations in SIRT1 abundance and activity in vivo contribute to development of fatty liver in dairy cows.
Collapse
Affiliation(s)
- Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, Anhui, China
| | - Leihong Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ning Hao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Suping Zou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qianming Jiang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shibing Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Flakemore AR, Malau-Aduli BS, Nichols PD, Malau-Aduli AEO. Degummed crude canola oil, sire breed and gender effects on intramuscular long-chain omega-3 fatty acid properties of raw and cooked lamb meat. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:17. [PMID: 28835852 PMCID: PMC5563916 DOI: 10.1186/s40781-017-0143-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 06/19/2017] [Indexed: 11/16/2022]
Abstract
Background Omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) confer important attributes to health-conscious meat consumers due to the significant role they play in brain development, prevention of coronary heart disease, obesity and hypertension. In this study, the ω3 LC-PUFA content of raw and cooked Longissimus thoracis et lumborum (LTL) muscle from genetically divergent Australian prime lambs supplemented with dietary degummed crude canola oil (DCCO) was evaluated. Methods Samples of LTL muscle were sourced from 24 first cross ewe and wether lambs sired by Dorset, White Suffolk and Merino rams joined to Merino dams that were assigned to supplemental regimes of degummed crude canola oil (DCCO): a control diet at 0 mL/kg DM of DCCO (DCCOC); 25 mL/kg DM of DCCO (DCCOM) and 50 mL/kg DCCO (DCCOH). Lambs were individually housed and offered 1 kg/day/head for 42 days before being slaughtered. Samples for cooked analysis were prepared to a core temperature of 70 °C using conductive dry-heat. Results Within raw meats: DCCOH supplemented lambs had significantly (P < 0.05) higher concentrations of eicosapentaenoic (EPA, 20:5ω3) and EPA + docosahexaenoic (DHA, 22:6ω3) acids than those supplemented with DCCOM or DCCOC; Dorset sired lambs contained significantly (P < 0.05) more EPA and EPA + DHA than other sire breeds; diet and sire breed interactions were significant (P < 0.05) in affecting EPA and EPA + DHA concentrations. In cooked meat, ω3 LC-PUFA concentrations in DCCOM (32 mg/100 g), DCCOH (38 mg/100 g), Dorset (36 mg/100 g), White Suffolk (32 mg/100 g), ewes (32 mg/100 g) and wethers (33 mg/100 g), all exceeded the minimum content of 30 mg/100 g of edible cooked portion of EPA + DHA for Australian defined ‘source’ level ω3 LC-PUFA classification. Conclusion These results present that combinations of dietary degummed crude canola oil, sheep genetics and culinary preparation method can be used as effective management tools to deliver nutritionally improved ω3 LC-PUFA lamb to meat consumers.
Collapse
Affiliation(s)
- Aaron Ross Flakemore
- Animal Science and Genetics, Tasmanian Institute of Agriculture, School of Land and Food, Faculty of Science, Engineering and Technology, University of Tasmania, Private Bag 54 Sandy Bay, Hobart, TAS 7001 Australia
| | - Bunmi Sherifat Malau-Aduli
- College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811 Australia
| | - Peter David Nichols
- Commonwealth Scientific and Industrial Research Organisation, Food, Nutrition and Bi-based Products, Oceans and Atmosphere, G.P.O. Box 1538, Hobart, TAS 7001 Australia
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Science and Genetics, Tasmanian Institute of Agriculture, School of Land and Food, Faculty of Science, Engineering and Technology, University of Tasmania, Private Bag 54 Sandy Bay, Hobart, TAS 7001 Australia.,Animal Genetics and Nutrition, Veterinary Sciences, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811 Australia
| |
Collapse
|
3
|
Nguyen DV, Le VH, Nguyen QV, Malau-Aduli BS, Nichols PD, Malau-Aduli AEO. Omega-3 Long-Chain Fatty Acids in the Heart, Kidney, Liver and Plasma Metabolite Profiles of Australian Prime Lambs Supplemented with Pelleted Canola and Flaxseed Oils. Nutrients 2017; 9:E893. [PMID: 28817082 PMCID: PMC5579686 DOI: 10.3390/nu9080893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/30/2017] [Accepted: 08/14/2017] [Indexed: 11/17/2022] Open
Abstract
The objective of the study was to ascertain whether human health beneficial omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) content in heart, kidney and liver can be enhanced by supplementing prime lambs with graded levels of canola and flaxseed oil. Health status of the lambs, as a consequence of the supplementation, was also investigated by examining their plasma metabolites. Sixty purebred and first-cross lambs were allocated to one of five treatments of lucerne hay basal diet supplemented with isocaloric and isonitrogenous wheat-based pellets without oil inclusion (Control) or graded levels of canola oil at 2.5% (2.5C), 5% (5C), flaxseed oil at 2.5% (2.5F) and 5% (5F) in a completely randomised design. Pre-slaughter blood, post-slaughter kidney, liver and heart samples were analysed for plasma metabolite and fatty acid profiles. Summations of docosapentaenoic acid and docosahexaenoic acid, and total n-3 LC-PUFA were enhanced in the liver and kidney of 5F supplemented lambs with a marked decrease in n-6/n-3 ratio and significant breed differences detected. There were generally no deleterious impacts on animal health status. A combination of 5% oil supplementation and lamb genetics is an effective and strategic management tool for enhancing n-3 LC-PUFA contents of heart, kidney and liver without compromising lamb health.
Collapse
Affiliation(s)
- Don V Nguyen
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia.
- National Institute of Animal Science, Thuy Phuong, Bac Tu Liem, Hanoi 129909, Vietnam.
| | - Van H Le
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia.
- National Institute of Animal Science, Thuy Phuong, Bac Tu Liem, Hanoi 129909, Vietnam.
| | - Quang V Nguyen
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia.
- College of Economics and Techniques, Thai Nguyen University, Thai Nguyen 252166, Vietnam.
| | - Bunmi S Malau-Aduli
- College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia.
| | - Peter D Nichols
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia.
- CSIRO Oceans & Atmosphere, P.O. Box 1538, Hobart, TAS 7001, Australia.
| | - Aduli E O Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
4
|
Deng Q, Ma D, Shi Z, Huang W, Du X, Gao W, Zhu X, Lei L, Zhang M, Sun G, Yuan X, Li X, Wang Z, Liu G, Li X. Effects of β-hydroxybutyricacid on the synthesis and assembly of very low-density lipoprotein in bovine hepatocytes in vitro. J Anim Physiol Anim Nutr (Berl) 2015; 100:331-6. [PMID: 26283277 DOI: 10.1111/jpn.12380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/26/2015] [Indexed: 11/30/2022]
Abstract
β-Hydroxybutyricacid (BHBA) is an important metabolite that involved in the development of ketosis and fatty liver in dairy cows. Dairy cows with fatty liver displayed high blood concentration of BHBA and very low-density lipoprotein (VLDL) assembly. The effects of BHBA on VLDL synthesis and assembly in hepatocytes of cows were unclear. In this study, bovine hepatocytes were cultured and treated with different concentrations of BHBA. We found that BHBA treatment upregulated the mRNA and protein levels of apolipoprotein B100 (ApoB 100), apolipoprotein E (ApoE) and microsomal triglyceride transfer protein (MTTP) and showed in a firstly increased and then decreased trend. Meanwhile, the mRNA and protein levels of LDLR showed in a reverse trend. Consequently, VLDL content was significantly increased in medium-dose BHBA treatment group, while decreased in high-dose group. These results indicate that the effects of BHBA on the VLDL synthesis showed in a dose-dependent manner that low levels of BHBA increase VLDL synthesis and high levels of BHBA decrease VLDL synthesis.
Collapse
Affiliation(s)
- Q Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, Jilin, China.,College of Animal Science and Technology, Inner Mongolia National University, Tongliao, China
| | - D Ma
- College of Animal Science and Technology, Inner Mongolia National University, Tongliao, China
| | - Z Shi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, Jilin, China
| | - W Huang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, Jilin, China
| | - X Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, Jilin, China
| | - W Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, Jilin, China
| | - X Zhu
- UMR 788, Inserm and University Paris-Sud, Bicêtre, Kremlin-Bicêtre, France
| | - L Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, Jilin, China
| | - M Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, Jilin, China
| | - G Sun
- College of Animal Science and Technology, Inner Mongolia National University, Tongliao, China
| | - X Yuan
- College of Animal Science and Technology, Inner Mongolia National University, Tongliao, China
| | - X Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, Jilin, China
| | - Z Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, Jilin, China
| | - G Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, Jilin, China.,College of Animal Science and Technology, Inner Mongolia National University, Tongliao, China
| | - X Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, Jilin, China
| |
Collapse
|