1
|
Bernardini C, Romagnoli N, Casalini I, Turba ME, Spadari A, Forni M, Gentilini F. Freeze-drying protocols and methods of maintaining the in-vitro biological activity of horse platelet lysate. Int J Vet Sci Med 2024; 12:71-80. [PMID: 39119550 PMCID: PMC11308971 DOI: 10.1080/23144599.2024.2380586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Platelet lysate, derived from platelets, are valuable biological products rich in bioactive molecules. Their use promotes tissue healing and modulates inflammation. However, maintaining the stability and bioactivity of platelet lysate is challenging since they degrade rapidly at room temperature. This study focused on the possibility to confer enhanced stability to freeze-dried equine platelet lysate as an alternative to platelet-rich plasma (PRP). Platelet lysate (PL) was derived from PRP and freeze-dried either as such or using various adjuvants. Primary cell cultures of porcine Vascular Wall-Mesenchymal Stem Cells were treated with different PL formulations, and cell viability was assessed using an MTT assay. Overall, the addition of PL significantly improved cell viability as compared to controls without growth factor supplementation or with foetal bovine serum. Notably, the freeze-drying process maintained the effectiveness of the PL for at least a week. Furthermore, the study revealed that varying the horse as the source of PL could yield varying effects on cell viability. Detailed freeze-drying protocols were established, including freezing, primary drying and secondary drying phases, and the type of adjuvant. This study demonstrated the potential of freeze-dried equine PL as a viable alternative to PRP and highlighted the importance of precise freeze-drying protocols and adjuvants for standardization. Equine PL showed promise for medical treatment in horses, offering advantages such as extended shelf life, ease of handling, and reduced transportation costs, with the potential for broadened therapeutic usage.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| | - Isabelle Casalini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| | | | - Alessandro Spadari
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| |
Collapse
|
2
|
Freitas NPP, Silva BDP, Bezerra MRL, Pescini LYG, Olinda RG, Salgueiro CCDM, Nunes JF, Martins JAM, Neto SG, Martins LT. Freeze-dried Platelet-rich Plasma and Stem Cell-conditioned Medium for Therapeutic Use in Horses. J Equine Vet Sci 2023; 121:104189. [PMID: 36464033 DOI: 10.1016/j.jevs.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
This study investigated platelet-rich plasma (PRP) and adipose stem cell-conditioned medium (ASC-CM) use as a strategy to accelerate tissue healing. Platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) were quantified in fresh and freeze-dried PRP and ASC-CM, and a stability test was performed in the freeze-dried samples (90 and 180 days of storage). A cell proliferation test was performed using equine mesenchymal stem cell culture in reconstituted PRP gel mesh after freeze-drying. In vivo PRP, ASC-CM applications, or their association were performed in induced wounds at 15 and 9-day intervals, according to the treatments: saline solution (control), PRP, ASC-CM, or ASC-CM + PRP. Horses were monitored through photographs and wound area measurements on days 5, 7, 15, and 24 after lesion induction. Skin biopsies were obtained on days 15 and 24 of the experiment. PDGF and VEGF quantification did not differ between fresh or freeze-dried treatments, was similar after freeze-drying or 90 days of storage, but showed a significant reduction after 180 days of storage. Comparing all treatments, no differences were observed in the histopathological analyses. For inflammation, fibroplasia, and collagen formation, only the time effect between the first and second biopsies was significant. The cell proliferation test revealed intense multiplication in the PRP gel mesh. Healing time was similar among all treatments. In conclusion, our results showed the possibility to produce and maintain freeze-dried PRP and ASC-CM for 90 days. Further studies are needed to better explore the in vivo therapeutic PRP and ASC-CM effects.
Collapse
Affiliation(s)
- Natália P P Freitas
- Department of Veterinary Medicine, Graduate Program, Rede Nordeste de Biotecnologia (Renorbio), State University of Ceará (UECE), Fortaleza, Ceará, Brazil.
| | - Beatriz D'Almeida P Silva
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| | - Marcus R L Bezerra
- Department of Biotechnology, Graduate Program, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Laura Y G Pescini
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| | - Roberio G Olinda
- Department of Pathology, Vetlab Veterinary Laboratory, Fortaleza, Ceará, Brazil
| | | | - José F Nunes
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, State University of Ceará (UECE), Fortaleza, Ceará, Brazil
| | - Jorge A M Martins
- Department of Veterinary Medicine, Federal University of Cariri (UFCA), Crato, Ceará, Brazil
| | - Saul G Neto
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| | - Leonardo T Martins
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| |
Collapse
|
3
|
Bowlby CM, Purmessur D, Durgam SS. Equine peripheral blood CD14 + monocyte-derived macrophage in-vitro characteristics after GM-CSF pretreatment and LPS+IFN-γ or IL-4+IL-10 differentiation. Vet Immunol Immunopathol 2023; 255:110534. [PMID: 36502640 PMCID: PMC9807231 DOI: 10.1016/j.vetimm.2022.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Macrophages are a heterogeneous population of immune cells that exhibit dynamic plasticity, polarize into inflammatory or regulatory/pro-resolving macrophages, and influence the healing tissue microenvironment. This study evaluated the in-vitro morphological, proliferative, cell surface marker expression and cytokine/soluble factor secretion characteristics of control, GM-CSF pretreated and inflammatory (LPS+IFN-γ) and regulatory (IL-4 + IL-10) differentiated equine CD14+ monocyte-derived macrophages. Phase contrast microscopy demonstrated that LPS+IFN-γ-primed macrophages exhibited a rounded, granular morphology, whereas IL-4 +IL-10-primed macrophages were elongated with a spindle-shaped morphology. GM-CSF enhanced the proliferation rate of monocytes/macrophages during adherent in-vitro culture. Flow cytometry analysis showed that GM-CSF alone and GM-CSF pretreatment with LPS+IFN-γ or IL-4 +IL-10 priming increased CD86 immunopositivity by 2-fold (p = 0.6); and CD206 immunopositivity remained unchanged. GM-CSF pretreatment and subsequent priming with LPS and IFN-γ yielded inflammatory macrophages that secrete significantly increased quantities of IL-1β compared to control (p = 0.012) and IL-4 +IL-10-primed (p = 0.0047) macrophages. GM-CSF pretreatment followed by both LPS + IFN-γ and IL-4 + IL-10 priming significantly increased IL-1Ra secretion by 6-fold (p < 0.05). There were no differences in TGFβ-1 secretion among control, LPS+IFN-γ or IL-4 + IL-10 primed macrophages (p = 0.85). All groups contained an average of 643 ± 51.5 pg/mL of TGFβ1. Among the culture conditions evaluated, IL-4 +IL-10 priming for 24 h after 6 days of adherent culture yielded macrophages that were the least inflammatory compared to GM-CSF pretreated and LPS+IFN-γ or IL-4 +IL-10-primed macrophages. These results provide a basis for subsequent in-vitro and in-vivo studies that investigate macrophage-tissue cell interactions and related biological mechanisms relevant to the field of immunomodulatory approaches for enhancing tissue healing.
Collapse
Affiliation(s)
- Charles M Bowlby
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Sushmitha S Durgam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
4
|
Fukuda K, Kuroda T, Tamura N, Mita H, Miyata H, Kasashima Y. Platelet lysate enhances equine skeletal muscle regeneration in a bupivacaine-induced muscle injury model. J Equine Vet Sci 2022; 112:103892. [DOI: 10.1016/j.jevs.2022.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
|
5
|
Colombo I, Mislei B, Mari G, Iacono E, Merlo B. Effect of platelet lysate on uterine response of mares susceptible to persistent mating-induced endometritis. Theriogenology 2021; 179:204-210. [PMID: 34894489 DOI: 10.1016/j.theriogenology.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Many mares are susceptible to persistent mating-induced endometritis (PMIE), an important cause of reduced fertility. Platelet lysate (PL) derives from freeze-thawing platelets after concentration, so that growth factors are released from the platelets. Among the advantages of PL compared to platelet-rich plasma (PRP), it can be frozen stored and allogenic use for PL might also be conceivable. Platelet-rich plasma beneficially reduced inflammatory response in PMIE mares when administered 24 h pre- or 4 h post-AI. The aim of this study was to test the effect of PL on inflammatory uterine response in mares susceptible to PMIE. A total of 14 mares susceptible to PMIE (based on presence of fluid or inflammatory cells 24 h after AI) underwent an untreated (Ctr) cycle followed by a treated (PL) cycle. From each mare, 100 mL of citrated whole blood was obtained for PRP production by centrifugation. The resultant PRP was brought to a final volume of 10 mL with platelet poor plasma and frozen at -80 °C to obtain PL. On untreated cycles, mares were inseminated with frozen-thawed semen 36 h after ovulation induction. On treated cycles, PL was thawed, infused into the uterus 12 h after ovulation induction, and AIs were performed 24 h later. The number of neutrophils in uterine cytology (score 1(normal)-3(severe inflammation)) evaluated by optical microscopy, uterine fluid accumulation (height x width) and uterine edema (score 0-3) observed in ultrasonography, were analysed. Pregnancy was evaluated by ultrasonography 14 days after ovulation. A significant decrease (P < 0.05) was observed on cytology score (PL 1.3 ± 0.1 vs Ctr 2.0 ± 0.1), fluid accumulation (PL 79.5 ± 30.1 mm2 vs Ctr 342.7 ± 52.9 mm2) and edema score (PL 1.8 ± 0.2 vs Ctr 2.3 ± 0.2) in treated mares. Pregnancy rate in PL-treated cycles (3/12) and control cycles (2/14), were not significantly different (P > 0.05). According to the results, we conclude that treatment with PL in mares classified as susceptible to PMIE appears to reduce the inflammatory response after breeding, based on clinical signs of uterine edema, IUF accumulation and PMNs migration.
Collapse
Affiliation(s)
- Ilaria Colombo
- DIMEVET, Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy.
| | - Beatrice Mislei
- AUB INFA, National Institute of Artificial Insemination, University of Bologna, Via Gandolfi 16, 40057, Granarolo dell'Emilia, BO, Italy
| | - Gaetano Mari
- DIMEVET, Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy; AUB INFA, National Institute of Artificial Insemination, University of Bologna, Via Gandolfi 16, 40057, Granarolo dell'Emilia, BO, Italy
| | - Eleonora Iacono
- DIMEVET, Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Barbara Merlo
- DIMEVET, Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
6
|
Camargo Garbin L, Lopez C, Carmona JU. A Critical Overview of the Use of Platelet-Rich Plasma in Equine Medicine Over the Last Decade. Front Vet Sci 2021; 8:641818. [PMID: 33869321 PMCID: PMC8044532 DOI: 10.3389/fvets.2021.641818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
In the 1990s, the role of platelets in inflammation and tissue healing was finally recognized. Since then, the clinical use of platelet-derived products (hemocomponents), such as, platelet-rich plasma (PRP), markedly increased. The promise of a more economical option of a disease-modifying treatment led to the intensive and continuous research of PRP products and to its widespread clinical use. A number of protocols and commercial kits have been developed with the intention of creating a more practical and reliable option for clinical use in equine patients. Still, the direct comparison between studies is particularly challenging due to the lack of standardization on the preparation methods and product composition. The incomplete reports on PRP cellular concentration and the poorly designed in vivo studies are additional matters that contest the clinical efficiency of this biomaterial. To overcome such challenges, several in vitro and in vivo studies have been proposed. Specifically, experiments have greatly focused in protocol optimization and its effect in different tissues. Additionally, in vivo studies have proposed different biological products envisioning the upgrade of the anti-inflammatory cytokines trusting to increase its anti-inflammatory effect. The individual variability and health status of the animal, type of tissue and condition treated, and protocol implemented are known to influence on the product's cell and cytokine composition. Such variability is a main clinical concern once it can potentially influence on PRP's therapeutic effects. Thus, lack of qualitative and quantitative evidence-based data supporting PRP's clinical use persists, despite of the numerous studies intended to accomplish this purpose. This narrative review aims to critically evaluate the main research published in the past decade and how it can potentially impact the clinical use of PRP.
Collapse
Affiliation(s)
- Livia Camargo Garbin
- Department of Veterinary Clinical Sciences, Faculty of Medical Sciences, School of Veterinary Medicine, The University of the West Indies at St. Augustine, St. Augustine, Trinidad and Tobago
| | - Catalina Lopez
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Manizales, Colombia
| | - Jorge U Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Manizales, Colombia
| |
Collapse
|
7
|
Regenerative Medicine for Equine Musculoskeletal Diseases. Animals (Basel) 2021; 11:ani11010234. [PMID: 33477808 PMCID: PMC7832834 DOI: 10.3390/ani11010234] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Lameness due to musculoskeletal disease is the most common diagnosis in equine veterinary practice. Many of these orthopaedic disorders are chronic problems, for which no clinically satisfactory treatment exists. Thus, high hopes are pinned on regenerative medicine, which aims to replace or regenerate cells, tissues, or organs to restore or establish normal function. Some regenerative medicine therapies have already made their way into equine clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders with promising but diverse results. This review summarises the current knowledge of commonly used regenerative medicine treatments and critically discusses their use. Abstract Musculoskeletal injuries and chronic degenerative diseases commonly affect both athletic and sedentary horses and can entail the end of their athletic careers. The ensuing repair processes frequently do not yield fully functional regeneration of the injured tissues but biomechanically inferior scar or replacement tissue, causing high reinjury rates, degenerative disease progression and chronic morbidity. Regenerative medicine is an emerging, rapidly evolving branch of translational medicine that aims to replace or regenerate cells, tissues, or organs to restore or establish normal function. It includes tissue engineering but also cell-based and cell-free stimulation of endogenous self-repair mechanisms. Some regenerative medicine therapies have made their way into equine clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders with promising results. However, the qualitative and quantitative spatiotemporal requirements for specific bioactive factors to trigger tissue regeneration in the injury response are still unknown, and consequently, therapeutic approaches and treatment results are diverse. To exploit the full potential of this burgeoning field of medicine, further research will be required and is ongoing. This review summarises the current knowledge of commonly used regenerative medicine treatments in equine patients and critically discusses their use.
Collapse
|
8
|
FUKUDA K, KURODA T, TAMURA N, MITA H, KASASHIMA Y. Optimal activation methods for maximizing the concentrations of platelet-derived growth factor-BB and transforming growth factor-β1 in equine platelet-rich plasma. J Vet Med Sci 2020; 82:1472-1479. [PMID: 32814750 PMCID: PMC7653321 DOI: 10.1292/jvms.20-0167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
Platelet-rich plasma (PRP) therapy has been widely applied in various medical fields including humans and horses. This study aimed to establish an optimal activation method to stably and reproducibly maximize the concentrations of platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-β1 (TGF-β1) contained in equine PRP. Autologous PRP was prepared from 11 Thoroughbreds. For the activation test, PRP was activated by either a single freeze-thaw cycle (Fr) or adding calcium and autologous serum containing thrombin (Ca). PDGF-BB and TGF-β1 concentrations in Fr, Ca, nonactivated (No), and platelet-poor plasma (PPP) samples were determined using ELISA and compared. For repetitive freeze-thaw test, PRP was subjected to single (Fr1), double (Fr2), triple (Fr3), or quadruple (Fr4) freeze-thaw cycles and the concentrations of both growth factors in samples were compared similarly. The PDGF-BB concentration in Ca was significantly higher than that in other preparations. The TGF-β1 concentrations in Fr and Ca were significantly higher than those in PPP and No, with no significant differences between Fr and Ca. The concentrations of both factors were significantly increased in PRP treated with multiple cycles of freeze-thaw compared with that in PRP treated with a single cycle. No significant differences were noted among Fr2, Fr3, and Fr4. Our findings suggest that activation by adding calcium and autologous serum is optimal for instant use of PRP and that double freeze-thawing is an easier and optimal activation method for cryopreserved PRP.
Collapse
Affiliation(s)
- Kentaro FUKUDA
- Clinical Veterinary Medicine Division, Equine Research
Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412,
Japan
| | - Taisuke KURODA
- Clinical Veterinary Medicine Division, Equine Research
Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412,
Japan
| | - Norihisa TAMURA
- Clinical Veterinary Medicine Division, Equine Research
Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412,
Japan
| | - Hiroshi MITA
- Clinical Veterinary Medicine Division, Equine Research
Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412,
Japan
| | - Yoshinori KASASHIMA
- The Equine Research Institute, Japan Racing Association,
1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| |
Collapse
|
9
|
Gonçalves NJN, Frantz N, de Oliveira RM. Platelet-rich plasma (PRP) therapy: An approach in reproductive medicine based on successful animal models. Anim Reprod 2020; 16:93-98. [PMID: 33299482 PMCID: PMC7720930 DOI: 10.21451/1984-3143-ar2018-093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 01/15/2023] Open
Abstract
Platelet-rich plasma (PRP) has been fully studied for different clinical applications in veterinary medicine for many years with promising results. As a result, therapeutic studies to elucidate pathways for PRP use in human reproduction have been performed. PRP applications in human reproductive medicine are recent, but the role of platelet growth factors in improving the endometrial environment is well known. Indications for PRP therapy show its positive effects in promoting endometrial and follicular growth and gestation in assisted reproduction cycles, as has been proven in animals. We summarized the putative role of PRP on endometrial receptivity with a brief history of promising results in research and clinical therapies.
Collapse
|
10
|
Radtke AV, Goodale MB, Fortier LA. Platelet and Leukocyte Concentration in Equine Autologous Conditioned Plasma Are Inversely Distributed by Layer and Are Not Affected by Centrifugation Rate. Front Vet Sci 2020; 7:173. [PMID: 32478101 PMCID: PMC7235160 DOI: 10.3389/fvets.2020.00173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/13/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Platelet rich plasma (PRP) is used extensively in equine regenerative medicine. Differences in preparation protocols give rise to significant variability in the cellular composition of PRP making it very difficult to establish a standard of care in the field. This study aimed to optimize the preparation protocol for leukocyte-reduced PRP (P-PRP). Methods: Blood (100 mL) was collected from horses (n = 5) and divided into 2 purple top EDTA tubes and 6 (15 mL) double syringesa with a final concentration of 10% acid citrate dextrose anticoagulant. Six double syringesa were collected from each horse; PRP samples were prepared in duplicate and centrifuged at 1,100 rpm (188 × g), 1,300 rpm (263 × g), or 1,500 rpm (350 × g). Duplicates were subjected to +/– braking at the end of centrifugation. The total volume of PRP generated was measured and divided into thirds. Each third (top, middle, and bottom) were drawn off separately using the inner (6 mL syringe) and placed in purple top EDTA tubes. Automated complete blood counts were performed on all peripheral whole blood and PRP samples. Results: The concentration of leukocytes was higher in the bottom layer of PRP compared to the top and middle layers (p < 0.0001). The concentration of platelets was slightly lower in the bottom layer of PRP than the middle layer (p = 0.02). Centrifugation braking increased the leukocyte concentration in the top (p = 0.03) and middle layers of PRP (p = 0.001). Centrifugation rate had no effect on the cellular composition of PRP (p = 0.1–0.6). Conclusions: Because layer of plasma affected both platelet and leukocyte concentrations in PRP, the most important modification for the current single spin, double syringe, plasma based PRP preparation protocols is to exclude the bottom 1/3 layer of PRP.
Collapse
Affiliation(s)
- Alexandra V Radtke
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Margaret B Goodale
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
de Laat MA, Spence RJ, Sillence MN, Pollitt CC. An investigation of the equine epidermal growth factor system during hyperinsulinemic laminitis. PLoS One 2019; 14:e0225843. [PMID: 31805097 PMCID: PMC6894753 DOI: 10.1371/journal.pone.0225843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Equine laminitis is a disease of the digital epidermal lamellae typified by epidermal cell proliferation and structural collapse. Most commonly the disease is caused by hyperinsulinemia, although the pathogenesis is incompletely understood. Insulin can activate the epidermal growth factor (EGF) system in other species and the present study tested the hypothesis that upregulation of EGF receptor (EGFR) signalling is a key factor in laminitis pathophysiology. First, we examined lamellar tissue from healthy Standardbred horses and those with induced hyperinsulinemia and laminitis for EGFR distribution and quantity using immunostaining and gene expression, respectively. Phosphorylation of EGFR was also quantified. Next, plasma EGF concentrations were compared in healthy and insulin-infused horses, and in healthy and insulin-dysregulated ponies before and after feeding. The EGFR were localised to the secondary epidermal lamellae, with stronger staining in parabasal, rather than basal, cells. No change in EGFR gene expression occurred with laminitis, although the receptor showed some phosphorylation. No difference was seen in EGF concentrations in horses, but in insulin-dysregulated ponies mean, post-prandial EGF concentrations were almost three times higher than in healthy ponies (274 ± 90 vs. 97.4 ± 20.9 pg/mL, P = 0.05). Although the EGFR does not appear to play a major pathogenic role in hyperinsulinemic laminitis, the significance of increased EGF in insulin-dysregulated ponies deserves further investigation.
Collapse
Affiliation(s)
- Melody A. de Laat
- Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail:
| | - Robert J. Spence
- Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Martin N. Sillence
- Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christopher C. Pollitt
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
12
|
McClain AK, McCarrel TM. The effect of four different freezing conditions and time in frozen storage on the concentration of commonly measured growth factors and enzymes in equine platelet-rich plasma over six months. BMC Vet Res 2019; 15:292. [PMID: 31412868 PMCID: PMC6694589 DOI: 10.1186/s12917-019-2040-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Background Platelet-rich plasma (PRP) is a therapeutic biologic that is used for treatment of musculoskeletal pathologies in equine athletes. Due to the expense of PRP kits, and the volumes obtained, freezing aliquots for future dosing is common. Aliquots of PRP are also commonly frozen for later analysis of growth factor concentrations in in vitro research. A variety of freezing methods are used and storage duration until analysis is often not reported. The optimal frozen storage conditions and duration to maintain concentrations of commonly measured growth factors and enzymes in PRP are unknown. Our objectives were two-fold. First, to determine the effect of a single freeze-thaw cycle on PRP protein concentrations and establish their baseline levels. Second, to evaluate the effect of storage in -20 °C automatic defrost freezer, − 20 °C manual defrost freezer, − 80 °C manual defrost freezer, and liquid nitrogen for 1, 3, and 6 months on PRP protein concentrations, compared to the established baseline concentrations. Results Fold-change between fresh activated and snap frozen PRP were analyzed using paired t-test. A snap frozen-thaw cycle resulted in increased MMP-9 (p = 0.0021), and a small significant decrease in TGF-β1 (p = 0.0162), while IGF-1 and PDGF-BB were unchanged compared to fresh activated PRP. Fold-change over time within storage method were analyzed using repeated measures ANOVA and Tukey post-hoc test. IGF-1 decreased in all conditions (p < 0.0001). At all time-points at -20 °C (p < 0.0001), and at 3 and 6 months at -80 °C (p < 0.0070), PDGF-BB decreased. TGF- β1 was unchanged or increased after 6 months (p < 0.0085). MMP-9 decreased at 3-months at -20 °C, and at all times at -80 °C and in liquid nitrogen compared to snap frozen (p < 0.0001). Conclusions The protein profile of equine frozen-stored PRP differs from fresh PRP. For clinical applications equine PRP can be stored at -80 °C for 1 month or in liquid nitrogen for 6 months to maintain PDGF-BB and TGF-β1 concentration, but IGF-1 concentrations will be reduced. The storage temperature and duration should be reported in studies measuring protein concentrations in PRP. To accurately measure IGF-1 concentrations, PRP samples should be analyzed immediately. Electronic supplementary material The online version of this article (10.1186/s12917-019-2040-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew K McClain
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Taralyn M McCarrel
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA.
| |
Collapse
|
13
|
Study of a Two-Step Centrifugation Protocol for Concentrating Cells and Growth Factors in Bovine Platelet-Rich Plasma. Vet Med Int 2017; 2017:1950401. [PMID: 29214094 PMCID: PMC5682892 DOI: 10.1155/2017/1950401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/01/2017] [Indexed: 12/20/2022] Open
Abstract
There is a lack of information about the methods used for bovine platelet-rich plasma (PRP)/platelet-rich gel (PRG) procurement, including information on platelet (PLT), white blood cell (WBC) in PRP, and growth factor release from PRG supernatants. The aims of this study were to compare and to correlate the PLT, WBC, transforming growth factor beta-1 (TGF-β1), and platelet-derived growth factor BB (PDGF-BB) concentrations in bovine whole blood, plasma, and four PRP layers and their respective PRG supernatants: A and B (obtained by a single centrifugation tube method at 720g/5 min) and C and D (obtained by a double centrifugation tube method, by using two centrifugation episodes at 720g/5 min). PLT and WBC counts were significantly higher in PRP-C, followed by whole blood, PRP-A, PRP-B, and PRP-D. TGF-β1 concentrations were significantly higher in PRG-B supernatants and its correspondent PRP-B lysate when compared to the other PRG supernatants and plasma. Supernatants from PRG-A, PRG-B, and PRG-D had equivalent TGF-β1 concentrations. PDGF-BB concentrations were not statistically different between the hemoderivatives. Significant Pearson correlations were noted between PLT counts and WBC counts (0.8) and between PLT counts and PLT distribution width (0.6). Further studies should be performed to assess the potential clinical applications of these PRPs.
Collapse
|