1
|
Patterson SJ, Clutton-Brock TH, Pfeiffer DU, Drewe JA. Trait-Based Vaccination of Individual Meerkats (Suricata suricatta) against Tuberculosis Provides Evidence to Support Targeted Disease Control. Animals (Basel) 2022; 12:ani12020192. [PMID: 35049814 PMCID: PMC8772857 DOI: 10.3390/ani12020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary There is evidence to show that, within a population, some individuals are more likely to spread infections than others. When trying to protect a population against infection, most strategies aim to vaccinate as many individuals as possible. However, vaccinating wildlife is difficult because individuals are difficult to find and capture. For wildlife therefore, the ideal strategy would involve targeting vaccinations at those individuals most likely to transmit infection, thus gaining maximum benefit from capturing a small number of individuals. Whilst this seems a very attractive solution, very few studies have attempted to provide evidence to support this theory. This study focuses on a population of meerkats with a history of tuberculosis. Previous work has suggested that socially dominant individuals are most likely to transmit infection, with subordinates most likely to become infected. Therefore, whilst some social groups were left untreated as a baseline, in others, either dominants or subordinates were vaccinated. All groups were monitored for two years, after which time the infection data was analysed. Groups in which vaccinations had been used showed reduced infection rates suggesting that the targeted approach had reduced transmission. A targeted approach may therefore offer an efficient option for vaccinating wildlife in the future. Abstract Individuals vary in their potential to acquire and transmit infections, but this fact is currently underexploited in disease control strategies. We trialled a trait-based vaccination strategy to reduce tuberculosis in free-living meerkats by targeting high-contact meerkats (socially dominant individuals) in one study arm, and high-susceptibility individuals (young subordinates) in a second arm. We monitored infection within vaccinated groups over two years comparing the results with untreated control groups. Being a member of a high-contact group had a protective effect on individuals’ survival times (Hazard Ratio = 0.5, 95% Confidence Interval, CI: 0.29–0.88, p = 0.02) compared to control groups. Over the study, odds of testing positive for tuberculosis increased more than five-fold in control groups (Odds Ratio = 5.40, 95% CI = 0.94–30.98, p = 0.058); however, no increases were observed in either of the treatment arms. Targeted disease control approaches, such as the one described in this study, allow for reduced numbers of interventions. Here, trait-based vaccination was associated with reduced infection rates and thus has the potential to offer more efficient alternatives to traditional mass-vaccination policies. Such improvements in efficiency warrant further study and could make infectious disease control more practically achievable in both animal (particularly wildlife) and human populations.
Collapse
Affiliation(s)
- Stuart J. Patterson
- Veterinary Epidemiology, Economics and Public Health Group, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK; (D.U.P.); (J.A.D.)
- Correspondence:
| | - Tim H. Clutton-Brock
- Large Animal Research Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK;
- Mammal Research Institute, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Dirk U. Pfeiffer
- Veterinary Epidemiology, Economics and Public Health Group, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK; (D.U.P.); (J.A.D.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Julian A. Drewe
- Veterinary Epidemiology, Economics and Public Health Group, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK; (D.U.P.); (J.A.D.)
| |
Collapse
|
2
|
Patterson SJ, Clarke C, Clutton-Brock TH, Miller MA, Parsons SDC, Pfeiffer DU, Vergne T, Drewe JA. Combining Analytical Approaches and Multiple Sources of Information to Improve Interpretation of Diagnostic Test Results for Tuberculosis in Wild Meerkats. Animals (Basel) 2021; 11:3453. [PMID: 34944230 PMCID: PMC8698085 DOI: 10.3390/ani11123453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Diagnostic tests are used to classify individual animals' infection statuses. However, validating test performance in wild animals without gold standard tests is extremely challenging, and the issue is further complicated in chronic conditions where measured immune parameters vary over time. Here, we demonstrate the value of combining evidence from different diagnostic approaches to aid interpretation in the absence of gold standards, large sample sizes, and controlled environments. Over a two-year period, we sampled 268 free-living meerkats (Suricata suricatta) longitudinally for Mycobacterium suricattae (a causative agent of tuberculosis), using three ante-mortem diagnostic tests based on mycobacterial culture, and antigen-specific humoral and cell-mediated immune responses, interpreting results both independently and in combination. Post-mortem cultures confirmed M. suricattae infection in 22 animals, which had prior ante-mortem information, 59% (13/22) of which were test-positive on a parallel test interpretation (PTI) of the three ante-mortem diagnostic assays (95% confidence interval: 37-79%). A similar ability to detect infection, 65.7% (95% credible interval: 42.7-84.7%), was estimated using a Bayesian approach to examine PTI. Strong evidence was found for a near doubling of the hazard of death (Hazard Ratio 1.75, CI: 1.14-2.67, p = 0.01), associated with a positive PTI result, thus demonstrating that these test results are related to disease outcomes. For individual tests, small sample sizes led to wide confidence intervals, but replication of conclusions, using different methods, increased our confidence in these results. This study demonstrates that combining multiple methodologies to evaluate diagnostic tests in free-ranging wildlife populations can be a useful approach for exploiting such valuable datasets.
Collapse
Affiliation(s)
- Stuart J. Patterson
- Veterinary Epidemiology, Economics and Public Health Group, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield AL9 7TA, UK; (D.U.P.); (J.A.D.)
| | - Charlene Clarke
- SAMRC Centre for TB Research, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa; (C.C.); (M.A.M.); (S.D.C.P.)
| | - Tim H. Clutton-Brock
- Large Animal Research Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK;
- Mammal Research Institute, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Michele A. Miller
- SAMRC Centre for TB Research, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa; (C.C.); (M.A.M.); (S.D.C.P.)
| | - Sven D. C. Parsons
- SAMRC Centre for TB Research, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa; (C.C.); (M.A.M.); (S.D.C.P.)
| | - Dirk U. Pfeiffer
- Veterinary Epidemiology, Economics and Public Health Group, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield AL9 7TA, UK; (D.U.P.); (J.A.D.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Timothée Vergne
- UMR ENVT-INRAE IHAP, National Veterinary School of Toulouse, 31300 Toulous, France;
| | - Julian A. Drewe
- Veterinary Epidemiology, Economics and Public Health Group, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield AL9 7TA, UK; (D.U.P.); (J.A.D.)
| |
Collapse
|
3
|
Review of Methods Used for Diagnosing Tuberculosis in Captive and Free-Ranging Non-Bovid Species (2012-2020). Pathogens 2021; 10:pathogens10050584. [PMID: 34064571 PMCID: PMC8151627 DOI: 10.3390/pathogens10050584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) is a group of bacteria that cause tuberculosis (TB) in diverse hosts, including captive and free-ranging wildlife species. There is significant research interest in developing immunodiagnostic tests for TB that are both rapid and reliable, to underpin disease surveillance and control. The aim of this study was to carry out an updated review of diagnostics for TB in non-bovid species with a focus predominantly on those based on measurement of immunity. A search was carried out to identify relevant papers meeting a pre-defined set of inclusion criteria. Forty-one papers were identified from this search, from which only twenty papers contained data to measure and compare diagnostic performance using diagnostic odds ratio. The diagnostic tests from each study were ranked based on sensitivity, specificity, and diagnostic odds ratio to define high performing tests. High sensitivity and specificity values across a range of species were reported for a new antigenic target, P22 complex, demonstrating it to be a reliable and accurate antigenic target. Since the last review of this kind was undertaken, the immunodiagnosis of TB in meerkats and African wild dogs was reported for the first time. Suid species showed the most consistent immunological responses and highlight a potential dichotomy between humoral and cellular immune responses.
Collapse
|
4
|
Thomas J, Balseiro A, Gortázar C, Risalde MA. Diagnosis of tuberculosis in wildlife: a systematic review. Vet Res 2021; 52:31. [PMID: 33627188 PMCID: PMC7905575 DOI: 10.1186/s13567-020-00881-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
Animal tuberculosis (TB) is a multi-host disease caused by members of the Mycobacterium tuberculosis complex (MTC). Due to its impact on economy, sanitary standards of milk and meat industry, public health and conservation, TB control is an actively ongoing research subject. Several wildlife species are involved in the maintenance and transmission of TB, so that new approaches to wildlife TB diagnosis have gained relevance in recent years. Diagnosis is a paramount step for screening, epidemiological investigation, as well as for ensuring the success of control strategies such as vaccination trials. This is the first review that systematically addresses data available for the diagnosis of TB in wildlife following the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The article also gives an overview of the factors related to host, environment, sampling, and diagnostic techniques which can affect test performance. After three screenings, 124 articles were considered for systematic review. Literature indicates that post-mortem examination and culture are useful methods for disease surveillance, but immunological diagnostic tests based on cellular and humoral immune response detection are gaining importance in wildlife TB diagnosis. Among them, serological tests are especially useful in wildlife because they are relatively inexpensive and easy to perform, facilitate large-scale surveillance and can be used both ante- and post-mortem. Currently available studies assessed test performance mostly in cervids, European badgers, wild suids and wild bovids. Research to improve diagnostic tests for wildlife TB diagnosis is still needed in order to reach accurate, rapid and cost-effective diagnostic techniques adequate to a broad range of target species and consistent over space and time to allow proper disease monitoring.
Collapse
Affiliation(s)
- Jobin Thomas
- Sanidad Y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), 13003, Ciudad Real, Spain.,Indian Council of Agricultural Research (ICAR), New Delhi, 110001, India
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain. .,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas, Grulleros, 24346, León, Spain.
| | - Christian Gortázar
- Sanidad Y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), 13003, Ciudad Real, Spain
| | - María A Risalde
- Departamento de Anatomía Y Anatomía Patológica Comparadas Y Toxicología. Facultad de Veterinaria, Universidad de Córdoba (UCO), 14014, Córdoba, Spain.,Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica Y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), 14004, Córdoba, Spain
| |
Collapse
|
5
|
Roos EO, Olea-Popelka F, Buss P, de Klerk-Lorist LM, Cooper D, Warren RM, van Helden PD, Parsons SDC, Miller MA. IP-10: A potential biomarker for detection of Mycobacterium bovis infection in warthogs (Phacochoerus africanus). Vet Immunol Immunopathol 2018; 201:43-48. [PMID: 29914681 DOI: 10.1016/j.vetimm.2018.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Bovine tuberculosis (bTB) is endemic in several areas of South Africa and has been reported in multiple species, including common warthogs (Phacochoerus africanus). Limited diagnostic tests and disease control programs exist for African wildlife. Thus, there is a need to develop techniques for bTB detection in species such as warthogs to assess their role in disease maintenance and spread in multi-host ecosystems. In this study, we obtained blood samples from warthogs in bTB endemic areas to investigate biomarkers for detection of Mycobacterium bovis infection. Warthog whole blood was incubated in QuantiFERON® TB Gold In-Tube tubes and pathogen specific release of interferon gamma (IFN-γ) and interferon gamma induced protein 10 (IP-10) was measured by a sandwich enzyme-linked immunosorbent assay. Although we were unable to measure IFN-γ, we could successfully measure IP-10. The IP-10 assay was able to distinguish between M. bovis-infected and M. bovis-culture negative warthogs, within bTB endemic areas, with an assay specific sensitivity of 68% and specificity of 84%. Of the 88 M. bovis-exposed warthogs screened, 42% were IP-10 test positive. These results indicate warthogs develop a measurable cell-mediated immune response after antigen stimulation of whole blood, which can distinguish between M. bovis-infected and M. bovis-culture negative animals. Thus, the IP-10 assay shows promise as an ante-mortem test to diagnose bTB in warthogs.
Collapse
Affiliation(s)
- Eduard O Roos
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Francisco Olea-Popelka
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 W. Drake Rd, Fort Collins, CO 80523, USA.
| | - Peter Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Private Bag X402, Skukuza, 1350, South Africa.
| | - Lin-Mari de Klerk-Lorist
- Office of the State Veterinarian, Kruger National Park, PO Box 12, Skukuza 1350, Department of Agriculture, Forestry and Fisheries, South Africa.
| | - David Cooper
- Ezemvelo KwaZulu Natal Wildlife, PO Box 25, Mtubatuba 3935, South Africa.
| | - Robin M Warren
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Paul D van Helden
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Sven D C Parsons
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Michele A Miller
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| |
Collapse
|