1
|
Tenk M, Tóth G, Márton Z, Sárközi R, Szórádi A, Makrai L, Pálmai N, Szalai T, Albert M, Fodor L. Examination of the Virulence of Actinobacillus pleuropneumoniae Serovar 16 in Pigs. Vet Sci 2024; 11:62. [PMID: 38393080 PMCID: PMC10892955 DOI: 10.3390/vetsci11020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Different virulence variants of A. pleuropneumoniae are involved in the etiology of porcine pleuropneumonia. The purpose of the present trial was examination of the virulence of the Actinobacillus pleuropneumoniae A-85/14 strain, the type strain of serovar 16, in an animal challenge experiment. Thirty 12-week-old piglets seronegative for A. pleuropneumoniae were allocated into three trial groups each of 10 animals, and they were infected intranasally with 106, 107, or 108 colony forming units (cfu) of the strain, respectively. Clinical signs were recorded twice a day, and the animals were euthanized 6 days after the infection. Typical clinical signs and postmortem lesions of porcine pleuropneumonia were seen in the animals of each trial group; however, they were generally mild, and no significant differences could be seen between the three groups. Even 106 colony forming units of A. pleuropneumoniae A-85/14 strain could induce clinical signs and lesions. Based on these results, the type strain of serovar 16 of A. pleuropneumoniae must be regarded as a typical pathogenic strain of the species.
Collapse
Affiliation(s)
- Miklós Tenk
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Gergely Tóth
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Zsuzsanna Márton
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - Rita Sárközi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Alejandra Szórádi
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Nimród Pálmai
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - Tamás Szalai
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - Mihály Albert
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| |
Collapse
|
2
|
Luan T, Wang L, Zhao J, Luan H, Zhang Y, Wang C, Langford PR, Liu S, Zhang W, Li G. A CRISPR/Cas12a-assisted rapid detection platform by biosensing the apxIVA of Actinobacillus pleuropneumoniae. Front Microbiol 2022; 13:928307. [PMID: 36160205 PMCID: PMC9493679 DOI: 10.3389/fmicb.2022.928307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Actinobacillus pleuropneumoniae is an important respiratory pig pathogen that causes substantial losses in the worldwide swine industry. Chronic or subclinical infection with no apparent clinical symptoms poses a challenge for preventing transmission between herds. Rapid diagnostics is important for the control of epidemic diseases. In this study, we formulated an A. pleuropneumoniae species-specific apxIVA-based CRISPR/Cas12a-assisted rapid detection platform (Card) that combines recombinase polymerase amplification (RPA) of target DNA and subsequent Cas12a ssDNase activation. Card has a detection limit of 10 CFUs of A. pleuropneumoniae, and there is no cross-reactivity with other common swine pathogens. The detection process can be completed in 1 h, and there was 100% agreement between the conventional apxIVA-based PCR and Card in detecting A. pleuropneumoniae in lung samples. Microplate fluorescence readout enables high-throughput use in diagnostic laboratories, and naked eye and lateral flow test readouts enable use at the point of care. We conclude that Card is a versatile, rapid, accurate molecular diagnostic platform suitable for use in both laboratory and low-resource settings.
Collapse
Affiliation(s)
- Tian Luan
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lu Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Jiyu Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Luan
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yueling Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
3
|
Zhang L, Luo W, Xiong R, Li H, Yao Z, Zhuo W, Zou G, Huang Q, Zhou R. A Combinatorial Vaccine Containing Inactivated Bacterin and Subunits Provides Protection Against Actinobacillus pleuropneumoniae Infection in Mice and Pigs. Front Vet Sci 2022; 9:902497. [PMID: 35747235 PMCID: PMC9212066 DOI: 10.3389/fvets.2022.902497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is the etiological agent of porcine contagious pleuropneumonia (PCP) that causes great economic losses in the swine industry. Currently, vaccination is still a commonly used strategy for the prevention of the disease. Commercially available vaccines of this disease, including inactivated bacterins and subunit vaccines, have clinical limitations such as side effects and low cross-protection. In this study, a combinatorial vaccine (Bac-sub) was developed, which contained inactivated bacterial cells of a serovar 1 strain and three recombinant protoxins (rApxIA, rApxIIA, and rApxIIIA). Its side effects, immune protection, and cross-protection were evaluated and compared with a commercial subunit vaccine and a commercial trivalent bacterin in a mouse infection model. The results revealed that the Bac-sub vaccine showed no obvious side effects, and induced higher levels of Apx toxin-specific IgG, IgG1, and IgG2a than the commercial vaccines after booster. After a challenge with virulent strains of serovars 1, 5, and 7, the Bac-sub vaccine provided greater protection (91.76%, 100%, and 100%, respectively) than commercial vaccines. Much lower lung bacterial loads (LBLs) and milder lung lesions were observed in the Bac-sub-vaccinated mice than in those vaccinated with the other two vaccines. The protective efficacy of the Bac-sub vaccine was further evaluated in pigs, which showed that vaccinated pigs displayed significantly milder clinical symptoms and lung lesions than the unvaccinated pigs after the challenge. Taken together, Bac-sub is a safe and effective vaccine that could provide high protection against A. pleuropneumoniae infection in both mice and pigs.
Collapse
Affiliation(s)
- Lijun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wentao Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ruyue Xiong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiming Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenxiao Zhuo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Diseases, Ministry of Science and Technology (China), Wuhan, China
- *Correspondence: Qi Huang
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Diseases, Ministry of Science and Technology (China), Wuhan, China
- The HZAU-HVSEN Institute, Huazhong Agricultural University, Wuhan, China
- Rui Zhou
| |
Collapse
|
4
|
Do T, Guran R, Jarosova R, Ondrackova P, Sladek Z, Faldyna M, Adam V, Zitka O. MALDI MSI Reveals the Spatial Distribution of Protein Markers in Tracheobronchial Lymph Nodes and Lung of Pigs after Respiratory Infection. Molecules 2020; 25:molecules25235723. [PMID: 33287430 PMCID: PMC7730995 DOI: 10.3390/molecules25235723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Respiratory infections are a real threat for humans, and therefore the pig model is of interest for studies. As one of a case for studies, Actinobacillus pleuropneumoniae (APP) caused infections and still worries many pig breeders around the world. To better understand the influence of pathogenic effect of APP on a respiratory system-lungs and tracheobronchial lymph nodes (TBLN), we aimed to employ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF MSI). In this study, six pigs were intranasally infected by APP and two were used as non-infected control, and 48 cryosections have been obtained. MALDI-TOF MSI and immunohistochemistry (IHC) were used to study spatial distribution of infectious markers, especially interleukins, in cryosections of porcine tissues of lungs (necrotic area, marginal zone) and tracheobronchial lymph nodes (TBLN) from pigs infected by APP. CD163, interleukin 1β (IL‑1β) and a protegrin-4 precursor were successfully detected based on their tryptic fragments. CD163 and IL‑1β were confirmed also by IHC. The protegrin-4 precursor was identified by MALDI-TOF/TOF directly on the tissue cryosections. CD163, IL‑1β and protegrin‑4 precursor were all significantly (p < 0.001) more expressed in necrotic areas of lungs infected by APP than in marginal zone, TBLN and in control lungs.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (T.D.); (R.G.); (V.A.)
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (T.D.); (R.G.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Rea Jarosova
- Department of Morphology, Physiology and Animal Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (R.J.); (Z.S.)
| | - Petra Ondrackova
- Department of Immunology, Veterinary Research Institute, 621 00 Brno, Czech Republic; (P.O.); (M.F.)
| | - Zbysek Sladek
- Department of Morphology, Physiology and Animal Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (R.J.); (Z.S.)
| | - Martin Faldyna
- Department of Immunology, Veterinary Research Institute, 621 00 Brno, Czech Republic; (P.O.); (M.F.)
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (T.D.); (R.G.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
- Central European Institute of Technology, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (T.D.); (R.G.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
- Central European Institute of Technology, Mendel University in Brno, 613 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-545-133-285
| |
Collapse
|
5
|
Dao HT, Truong QL, Do VT, Hahn TW. Construction and immunization with double mutant Δ apxIBD Δ pnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5. J Vet Sci 2020; 21:e20. [PMID: 32233129 PMCID: PMC7113565 DOI: 10.4142/jvs.2020.21.e20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Actinobacillus pleuropneumoniae (APP) causes a form of porcine pleuropneumonia that leads to significant economic losses in the swine industry worldwide. The apxIBD gene is responsible for the secretion of the ApxI and ApxII toxins and the pnp gene is responsible for the adaptation of bacteria to cold temperature and a virulence factor. The apxIBD and pnp genes were deleted successfully from APP serotype 1 and 5 by transconjugation and sucrose counter-selection. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants lost hemolytic activity and could not secrete ApxI and ApxII toxins outside the bacteria because both mutants lost the ApxI- and ApxII-secreting proteins by deletion of the apxIBD gene. Besides, the growth of these mutants was defective at low temperatures resulting from the deletion of pnp. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants were significantly attenuated compared with wild-type ones. However, mice vaccinated intraperitoneally with APP5ΔapxIBDΔpnp did not provide any protection when challenged with a 10-times 50% lethal dose of virulent homologous (APP5) and heterologous (APP1) bacterial strains, while mice vaccinated with APP1ΔapxIBDΔpnp offered 75% protection against a homologous challenge. The ΔapxIBDΔpnp mutants were significantly attenuated and gave different protection rate against homologous virulent wild-type APP challenging.
Collapse
Affiliation(s)
- Hoai Thu Dao
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Quang Lam Truong
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.,Key Laboratory of Veterinary Medicine, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| | - Van Tan Do
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Tae Wook Hahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
6
|
Bao CT, Xiao JM, Liu BJ, Liu JF, Zhu RN, Jiang P, Li L, Langford PR, Lei LC. Establishment and comparison of Actinobacillus pleuropneumoniae experimental infection model in mice and piglets. Microb Pathog 2019; 128:381-389. [PMID: 30664928 DOI: 10.1016/j.micpath.2019.01.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia, a disease responsible for substantial losses in the worldwide pig industry. In this study, outbred Kunming (KM) and Institute of Cancer Research (ICR) mice were evaluated as alternative mice models for APP research. After intranasal infection of serotype 5 reference strain L20, there was less lung damage and a lower clinical sign score in ICR compared to KM mice. However, ICR mice showed more obvious changes in body weight loss, the amount of immune cells (such as neutrophils and lymphocytes) and cytokines (such as IL-6, IL-1β and TNF-α) in blood and bronchoalveolar lavage fluid (BALF). The immunological changes observed in ICR mice closely mimicked those found in piglets infected with L20. While both ICR and KM mice are susceptible to APP and induce pathological lesions, we suggest that ICR and KM mice are more suitable for immunological and pathogenesis studies, respectively. The research lays the theoretical basis for determine that mice could replace pigs as the APP infection model and it is of significance for the study of APP infection in the laboratory.
Collapse
Affiliation(s)
- Chun-Tong Bao
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jia-Meng Xiao
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Bai-Jun Liu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jian-Fang Liu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Ri-Ning Zhu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Peng Jiang
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Lei Li
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | | | - Lian-Cheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| |
Collapse
|
7
|
Galactose-1-phosphate uridyltransferase (GalT), an in vivo-induced antigen of Actinobacillus pleuropneumoniae serovar 5b strain L20, provided immunoprotection against serovar 1 strain MS71. PLoS One 2018; 13:e0198207. [PMID: 29856812 PMCID: PMC5983418 DOI: 10.1371/journal.pone.0198207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
GALT is an important antigen of Actinobacillus pleuropneumoniae (APP), which was shown to provide partial protection against APP infection in a previous study in our lab. The main purpose of the present study is to investigate GALT induced cross-protection between different APP serotypes and elucidate key mechanisms of the immune response to GALT antigenic stimulation. Bioinformatic analysis demonstrated that galT is a highly conserved gene in APP, widely distributed across multiple pathogenic strains. Homologies between any two strains ranges from 78.9% to 100% regarding the galT locus. Indirect enzyme-linked immunosorbent assay (ELISA) confirmed that GALT specific antibodies could not be induced by inactivated APP L20 or MS71 whole cell bacterin preparations. A recombinant fusion GALT protein derived from APP L20, however has proven to be an effective cross-protective antigen against APP sevorar 1 MS71 (50%, 4/8) and APP sevorar 5b L20 (75%, 6/8). Histopathological examinations have confirmed that recombinant GALT vaccinated animals showed less severe pathological signs in lung tissues than negative controls after APP challenge. Immunohistochemical (IHC) analysis indicated that the infiltration of neutrophils in the negative group is significantly increased compared with that in the normal control (P<0.001) and that in surviving animals is decreased compared to the negative group. Anti-GALT antibodies were shown to mediate phagocytosis of neutrophils. After interaction with anti-GALT antibodies, survival rate of APP challenged vaccinated animals was significantly reduced (P<0.001). This study demonstrated that GALT is an effective cross-protective antigen, which could be used as a potential vaccine candidate against multiple APP serotypes.
Collapse
|